\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)
Since \(\sin y = \sin x\), we must have \[ y = x + 2 k \pi \] where \(k \in \ZZ \), or \[ y = (2k + 1) \pi - x \] where \(k \in \ZZ \).
For the first case, since \(x \in [-\pi , \pi ]\) and \(y \in [-\pi , \pi ]\), we must have simply \(x = y\).
For the second case, within this range, we can have \(y = \pi - x\), and \(y = - \pi - x\).
Hence, the sketch looks as follows.
Differentiating with respect to \(x\), we have \[ \cos y \DiffFrac {y}{x} = \frac {1}{2} \cos x. \]
Since \(\sin y = \frac {1}{2} \sin x\), \(\cos y = \pm \sqrt {1 - \sin ^2 y} = \pm \sqrt {1 - \frac {1}{4} \sin ^2 x}\). Since \(0 \leq y \leq \frac {1}{2} \pi \), \(\cos y > 0\), and hence \(\cos y = \frac {1}{2} \sqrt {4 - \sin ^2 x}\). Hence, \[ \DiffFrac {y}{x} = \frac {\frac {1}{2} \cos x}{\frac {1}{2} \sqrt {4 - \sin ^2 x}} = \frac {\cos x}{\sqrt {4 - \sin ^2 x}}. \]
Differentiating this again gives us \begin {align*} \NdiffFrac {2}{y}{x} & = \frac {(- \sin x) \sqrt {4 - \sin ^2 x} - \frac {1}{2} \cdot (-2 \sin x) \cdot \cos x \cdot \frac {1}{\sqrt {4 - \sin ^2 x}} \cdot \cos x}{4 - \sin ^2 x} \\ & = \frac {(- \sin x) (4 - \sin ^2 x) + \sin x \cos ^2 x}{(4 - \sin ^2 x)^{\frac {3}{2}}} \\ & = \frac {-4 \sin x + \sin ^3 x + \sin x (1 - \sin ^2 x)}{(4 - \sin ^2 x)^{\frac {3}{2}}} \\ & = -\frac {3 \sin x}{(4 - \sin ^2 x)^{\frac {3}{2}}}, \end {align*}
as desired.
Within this range of \(x\) and \(y\), we have \[ y = \arcsin \left (\frac {1}{2} \sin x\right ), \] and hence this is a function, and each \(x\) corresponds to a unique \(y\).
At \(x = 0\), \[ y = 0, y' = \frac {\cos 0}{\sqrt {4 - \sin ^2 0}} = \frac {1}{2}, \] and at \(x = \frac {\pi }{2}\), \[ y = \frac {\pi }{6}, y' = -\frac {\cos \frac {\pi }{2}}{\sqrt {4 - \sin ^2 \frac {\pi }{2}}} = 0. \]
Since \(y'' = - \frac {3 \sin x}{(4 - \sin ^2 x)^{\frac {3}{2}}} < 0\) for \(x \in \left [0, \frac {\pi }{2}\right ]\), this function is concave, and hence the graph looks as follows.
Hence, for \((x, y) \in [-\pi , \pi ]^2\), the graph looks as follows, by symmetry.
The graph is as follows.