\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2017.2.2 Question 2

We have \begin {align*} x_{n + 2} & = \frac {a x_{n + 1} - 1}{x_{n + 1} + b} \\ & = \frac {a \cdot \frac {a x_n - 1}{x_n + b} - 1}{\frac {a x_n - 1}{x_n + b} + b} \\ & = \frac {a (a x_n - 1) - (x_n + b)}{(a x_n - 1) + b (x_n + b)} \\ & = \frac {(a^2 - 1) x_n - (a + b)}{(a + b) x_n + (b^2 - 1)}. \end {align*}

  1. If the sequence is periodic with period \(2\), then for all integers \(n \geq 0\), we have \begin {align*} x_{n + 2} = x_n & \iff x_n \left [(a + b) x_n + (b^2 - 1)\right ] = (a^2 - 1) x_n - (a + b) \\ & \iff (a + b) x_n^2 - (a + b) (a - b) x_n + (a + b) = 0 \\ & \iff (a + b) (x_n^2 - (a - b) x_n + 1) = 0. \end {align*}

    We also have \begin {align*} x_{n + 1} = x_n & \iff x_n (x_n + b) = a x_n - 1 \\ & \iff x_n^2 - (a - b) x_b + 1 = 0, \end {align*}

    and this means that for some \(n = k \geq 0\), we must have \(x_n^2 - (a - b) x_n + 1 \neq 0\) (otherwise, the sequence will have period \(1\)).

    Therefore, for such \(n = k\), we must have \(a + b = 0\) for the first condition to be true, and hence this is a necessary condition.

  2. Using the formula between \(x_{n + 4}\) and \(x_n\), we have \begin {align*} x_{n + 4} & = \frac {(a^2 - 1) x_{n + 2} - (a + b)}{(a + b) x_{n + 2} + (b^2 - 1)} \\ & = \frac {(a^2 - 1) \cdot \frac {(a^2 - 1) x_n - (a + b)}{(a + b) x_n + (b^2 - 1)} - (a + b)}{(a + b) \cdot \frac {(a^2 - 1) x_n - (a + b)}{(a + b) x_n + (b^2 - 1)} + (b^2 - 1)} \\ & = \frac {(a^2 - 1) \cdot \left [(a^2 - 1) x_n - (a + b)\right ] - (a + b) \cdot \left [(a + b) x_n + (b^2 - 1)\right ]}{(a + b) \cdot \left [(a^2 - 1) x_n - (a + b)\right ] + (b^2 - 1) \cdot \left [(a + b) x_n + (b^2 - 1)\right ]} \\ & = \frac {\left [(a^2 - 1)^2 - (a + b)^2\right ] x_n - \left [(a^2 - 1)(a + b) + (a + b)(b^2 - 1)\right ]}{(a + b)\left [(a^2 - 1) + (b^2 - 1)\right ] x_n + \left [(b^2 - 1)^2 - (a + b)^2\right ]}. \end {align*}

    If sequence has period \(4\), we have \(x_{n + 4} = x_n\) for all integers \(n \geq 0\), and the sequence does not have period \(1\), \(2\) or \(3\).

    We notice \begin {align*} x_{n + 4} = x_n & \iff x_n \cdot \left [(a + b)\left [(a^2 - 1) + (b^2 - 1)\right ] x_n + \left [(b^2 - 1)^2 - (a + b)^2\right ]\right ] \\ & \phantom {\iff } = \left [(a^2 - 1)^2 - (a + b)^2\right ] x_n - \left [(a^2 - 1)(a + b) + (a + b)(b^2 - 1)\right ] \\ & \iff (a + b) (a^2 + b^2 - 2) \left (x_n^2 - (a - b)x_n + 1 \right ) = 0. \end {align*}

    From the previous part, we know that for some \(n = k \geq 0\), we must have \[ (a + b) \left (x_k^2 - (a - b)x_k + 1 \right ) \neq 0, \] which means \(a + b \neq 0\) and \(x_k^2 - (a - b) x_k + 1 \neq 0\). Hence, we must have \(a^2 + b^2 - 2 = 0\).

    On the other hand, if \(a^2 + b^2 - 2 = 0\), \(a + b \neq 0\) and \(x_k^2 - (a - b) x_k + 1 \neq 0\) for some \(n = k \geq 0\), we know that the sequence does not satisfy \(x_{n + 1} = x_n\), does not satisfy \(x_{n + 2} = x_n\), and it satisfies \(x_{n + 4} = x_n\).

    If \(x_{n + 3} = x_n\), then we have \(x_{n + 3} = x_{n + 4}\) which contradicts with not satisfying \(x_{n + 1} = x_n\). Hence, the sequence does not satisfy \(x_{n + 3} = x_n\), and it must have period \(4\).

    Therefore, the sequence has period \(4\), if and only if \[ \left \{ \begin {aligned} a + b & \neq 0, \\ a^2 + b^2 - 2 & = 0, \\ x_k^2 - (a - b)x_k + 1 & \neq 0 \text { for some } n = k \geq 0. \end {aligned} \right . \]