\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2015.3.6 Question 6

  1. By simplification, we notice that letting \(u = w + z\) and \(v = w^2 + z^2\), we have \begin {align*} w^3 + z^3 & = (w + z)(w^2 + z^2) - wz (w + z) \\ & = (w + z)(w^2 + z^2) - \frac {1}{2} ((w + z)^2 - (w^2 + z^2))(w + z) \\ & = uv - \frac {u(u^2 - v)}{2} \\ & = u \left (v - \frac {u^2 - v}{2}\right ) \\ & = \frac {u}{2} \left (2v - (u^2 - v)\right ) \\ & = \frac {u (3v - u^2)}{2}. \end {align*}

    This means, \[ -\lambda + \lambda u = \frac {u \left [3 \cdot \left (u^2 - \frac {2}{3}\right ) - u^2\right ]}{2} \] which simplifies to \[ (u - 1)(u^2 + u - \lambda ) = 0. \]

    Therefore, \(u_1 = 1\). The discriminant of the remaining quadratic is \[ \Delta = 1 + 4\lambda > 1 > 0, \] since \(\lambda > 0\).

    Therefore, \(u\) must always be real.

    The only case where there are less than \(3\) possible values of \(u\), is when \(u_1 = 1\) is also a solution to the quadratic.

    This is precisely when \(\lambda = u^2 + u = 1^2 + 1 = 2\).

    Apart from this case, the two real solutions to the quadratic are distinct and must not be \(1\), and there are three real values of \(u\).

    Since \(u\) is always real, \(u = w + z\) is always real and \(v = w^2 + z^2\) is always real. However, notice that \[ 2v - u^2 = 2 \cdot \left (u^2 - \frac {2}{3}\right ) - u^2 = u^2 - \frac {4}{3}. \]

    But when \(u = 1\), \(2v - u^2 < 0\), \(2v < u^2\), and by part (i) at least one of \(w, z\) is not real.