\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2015.3.5 Question 5

    1. Assume that \(2^{\frac {1}{3}}\) and \(2^{\frac {2}{3}}\) are rational.
    2. Define the set \(T\) to be the set of positive integers with the following property: \[ t \text { is in } T \text { if and only if } t 2^{\frac {1}{3}} \text { and } t2^{\frac {2}{3}} \text { are integers}, \] i.e. \[ T = \left \{t \in \NN \mid t 2^{\frac {1}{3}} \in \NN , t 2^{\frac {2}{3}} \in \NN \right \}. \]
    3. Set \(T\) contains at least one positive integer, since there must exist \(a, b, c, d \in \NN \) by Step 1 such that \(2^{\frac {1}{3}} = \frac {a}{b}\) and \(2^{\frac {2}{3}} = \frac {c}{d}\), and \(bd \in T\).
    4. Let \(k\) be the smallest positive integer in \(T\).
    5. Consider the number \(\left (2^{\frac {1}{3}} - 1\right )k\).

      Notice that since \(k \in T\), we must have \(k \in \NN \) and \(2^{\frac {1}{3}} k \in \NN \). Hence, \(\left (2^{\frac {1}{3}} - 1\right )k \in \ZZ \)

      Since \(2 > 1\), we also have \(2^{\frac {1}{3}} > 1^{\frac {1}{3}} = 1\), and hence \(\left (2^{\frac {1}{3}} - 1\right )k \in \NN \).

      Also, notice that \[ \left (2^{\frac {1}{3}} - 1\right )k \cdot 2^{\frac {1}{3}} = 2^{\frac {2}{3}} \cdot k - 2^{\frac {1}{3}} \cdot k \] and \[ \left (2^{\frac {1}{3}} - 1\right )k \cdot 2^{\frac {2}{3}} = k - 2^{\frac {2}{3}} \cdot k \] must also both be integers since \(k \in T\).

      This means that \(\left (2^{\frac {1}{3}} - 1\right )k \in T.\)

    6. But notice that \(1 = 1^{\frac {1}{3}} < 2^{\frac {1}{3}} < 8^{\frac {1}{3}} = 2\), which means \(0 < 2^{\frac {1}{3}} - 1 < 1\), and \(0 < \left (2^{\frac {1}{3}} - 1\right )k < k.\)

      This contradicts with Step 4 where \(k\) is the smallest positive integer in \(T\). This means our assumption that \(2^{\frac {1}{3}}\) and \(2^{\frac {2}{3}}\) are rational, is false.

      So either of them is not rational. By the statement we proved earlier, both of them must be simultaneously rational or irrational, hence both of them must be irrational, which finishes our proof.