\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2021.3.6 Question 6

  1. By multiplying by \(\cot \alpha \) on top and bottom of the fraction, we have \begin {align*} f_{\alpha }(x) & = \arctan \left (\frac {x + \cot \alpha }{1 - x \cot \alpha }\right ) \\ & = \arctan \left (\frac {x + \tan \left (\frac {\pi }{2} - \alpha \right )}{1 - x \tan \left (\frac {\pi }{2} - \alpha \right )}\right ) \\ & = \arctan \tan \left (\arctan x + \frac {\pi }{2} - \alpha \right ). \end {align*}

    Since \(\arctan x \in \left (-\frac {\pi }{2}, \alpha \right ) \cup \left (\alpha , \frac {\pi }{2}\right )\), we have \[ \arctan x + \frac {\pi }{2} - \alpha \in \left (-\alpha , \frac {\pi }{2}\right ) \cup \left (\frac {\pi }{2}, \pi - \alpha \right ). \]

    Hence, we can simplify this to \begin {align*} f_{\alpha }(x) & = \arctan \tan \left (\arctan x + \frac {\pi }{2} - \alpha \right ) \\ & = \begin {cases} \arctan x + \frac {\pi }{2} - \alpha , & x < \tan \alpha , \\ \arctan x - \frac {\pi }{2} - \alpha , & x > \tan \alpha . \end {cases} \end {align*}

    Hence, by differentiating with respect to \(x\), the constants differentiate to \(0\), and hence \begin {align*} f'_{\alpha }(x) & = \DiffOp {x} \arctan x \\ & = \frac {1}{1 + x^2}, \end {align*}

    as desired.

    The graph consists of \(2\) branches of \(\arctan \), as the simplified expressions suggests. We have the following limiting behaviours of \(f_{\alpha }\): \begin {align*} \lim _{x \to -\infty } f_{\alpha } (x) & = \lim _{x \to -\infty } \arctan x + \frac {\pi }{2} - \alpha = -\alpha , \\ \lim _{x \to \tan \alpha ^{-}} f_{\alpha } (x) & = \frac {\pi }{2}, \\ \lim _{x \to \tan \alpha ^{+}} f_{\alpha } (x) & = -\frac {\pi }{2}, \\ \lim _{x \to \infty } f_{\alpha } (x) & = \lim _{x \to \infty } \arctan x - \frac {\pi }{2} - \alpha = -\alpha , \end {align*}

    which shows that \(f_{\alpha }\) has a horizontal asymptote with equation \(y = -\alpha \).

    For the intersection with the \(y\)-axis, \[ f_{\alpha } (0) = \arctan 0 + \frac {\pi }{2} - \alpha = \frac {\pi }{2} - \alpha , \] and for the intersection with the \(x\)-axis, \[ f_{\alpha } (x) = 0 \iff x \tan \alpha + 1 = 0\iff x = - \cot \alpha . \]

    The graph looks as follows.

    (((      )) )
xyOy0(0tt =,,aa−nn−π2 −cαααo,,αt π2−α π2)

    The domain of this new graph is \(x \in \RR \setminus \{\tan \alpha , \tan \beta \}\). By considering the functions in the different corresponding ranges, we have \[ f_{\alpha } (x) - f_{\beta }(x) = \begin {cases} \left (\arctan (x) + \frac {\pi }{2} - \alpha \right ) - \left (\arctan (x) + \frac {\pi }{2} - \beta \right ) = \beta - \alpha , & x < \tan \alpha , \\ \left (\arctan (x) - \frac {\pi }{2} - \alpha \right ) - \left (\arctan (x) + \frac {\pi }{2} - \beta \right ) = \beta - \alpha - \pi , & \tan \alpha < x < \tan \beta , \\ \left (\arctan (x) - \frac {\pi }{2} - \alpha \right ) - \left (\arctan (x) - \frac {\pi }{2} - \beta \right ) = \beta - \alpha , & \tan \beta < x. \end {cases} \]

    Hence, the graph looks as follows.

    xyOββtata − −nn αααβ − π

  2. By differentiation, we have \begin {align*} g'(x) & = \frac {1}{1 - \sin ^2 x} \cos x - \frac {1}{\sqrt {1 + \tan ^2 x}} \sec ^2 x \\ & = \frac {\cos x}{\cos ^2 x} - \frac {\sec ^2 x}{\abs *{\sec x}} \\ & = \sec x - \abs *{\sec x} \\ & = \begin {cases} \sec x - \sec x = 0, & 0 \leq x < \frac {1}{2}\pi \text { or } \frac {3}{2} \pi < x \leq 2\pi , \\ \sec x - (- \sec x) = 2 \sec x, & \frac {1}{2}\pi < x < \frac {3}{2}\pi , \end {cases} \end {align*}

    since \(\sec x\) takes the same sign as \(\cos x\), which is negative when \(\frac {1}{2}\pi < x < \frac {3}{2}\pi \), and positive when \(0 \leq x < \frac {1}{2}\pi \) or \(\frac {3}{2} \pi < x \leq 2\pi \) within the range.

    For \(\frac {1}{2} \pi < x < \frac {3}{2}\pi \), we must have \[ g(x) = \ln \abs *{\tan x + \sec x} + C = \ln \left (- \tan x - \sec x\right ) + C, \] and by verifying \[ g(\pi ) = \artanh (0) - \arsinh (0) = 0, \] we can see \(C = 0\).

    Hence, for \(0 \leq x < \frac {1}{2}\pi \) and \(\frac {3}{2} \pi < x \leq 2\pi \) respectively, \(g(x)\) is constant, and notice that \[ g(0) = g(2\pi ) = 0, \] and hence \[ g(x) = \begin {cases} \ln \left (- \tan x - \sec x\right ), & \frac {1}{2} \pi < x < \frac {3}{2}\pi , \\ 0, & 0 \leq x < \frac {1}{2}\pi \text { or } \frac {3}{2} \pi \leq 2\pi . \end {cases} \]

    xyOπ3π2ππ
22