\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)
When the curves meet, the \(r\) values and the \(\theta \) values must be both equal, and hence \begin {align*} a + 2 \cos \theta & = 2 + \cos 2\theta \\ a + 2 \cos \theta & = 2 + 2 \cos ^2 \theta - 1 \\ 2 \cos ^2 \theta - 2 \cos \theta + 1 - a & = 0, \end {align*}
as desired.
By differentiating with respect to theta, for the two curves to touch, we must have \begin {align*} \DiffOp {\theta } (a + 2 \cos \theta ) & = \DiffOp {\theta } (2 + \cos 2 \theta ) \\ - 2 \sin \theta & = - 2 \sin 2 \theta \\ \sin \theta & = \sin 2 \theta \\ \sin \theta & = 2 \sin \theta \cos \theta \\ \sin \theta (2 \cos \theta - 1) & = 0. \end {align*}
This means, either for the value of \(\sin \theta = 0\) it satisfies the first equation, or for the value of \(2 \cos \theta - 1 = 0\) it satisfies the first equation.
For the first case, we must have \(\cos \theta = \pm 1\), and hence \begin {align*} a & = 2 \cos ^2 \theta - 2 \cos \theta + 1 \\ & = 2 (\pm 1)^2 - 2 (\pm 1) + 1 \\ & = 3 \pm 2, \end {align*}
and so \(a = 1\) or \(a = 5\).
For the second case, we have \(\cos \theta = \frac {1}{2}\), and hence \begin {align*} a & = 2 \cos ^2 \theta - 2 \cos \theta + 1 \\ & = 2 \left (\frac {1}{2}\right )^2 - 2 \left (\frac {1}{2}\right ) + 1 \\ & = \frac {1}{2}, \end {align*}
as desired.
For the case where \(a = \frac {1}{2}\), the curves meet precisely for \(\cos \theta = \frac {1}{2}\) only, and hence \(\theta = \pm \frac {\pi }{3}\), which gives \(r = \frac {1}{2} + 1 = \frac {3}{2}\).
Both curves are symmetric about the initial line, since \(\cos \) is an even function.
When \(\theta = 0\), \(r_1 = a + 2 = \frac {5}{2}\), and \(r_2 = 2 + 1 = 3\).
For \(r_1\), since \(r \geq 0\), we must have \begin {align*} \frac {1}{2} + 2 \cos \theta & \geq 0 \\ \cos \theta & \geq - \frac {1}{4}, \end {align*}
which means it only exists for \[ -\arccos \left (-\frac {1}{4}\right ) \leq \theta \leq \arccos \left (-\frac {1}{4}\right ). \]
When \(\theta = \pm \frac {\pi }{2}\), \(r_1 = \frac {1}{2} + 2 \cos \pm \frac {\pi }{2} = \frac {1}{2}\).
For all values of \(\theta \), we must have \(r_2 \geq 0\). When \(\theta = \pi \), \(r_2 = 2 + 1 = 3\), and for \(\theta = \pm \frac {\pi }{2}\), \(r_1 = \frac {1}{2} + \cos \pm \frac {\pi }{2} = \frac {1}{2}\), \(r_2 = 2 + \cos \pm \pi = 1\).
Hence, the two curves are as follows. All coordinates are in \((r, \theta )\).
\(a = 1\). For \(r_1\), since \(r \geq 0\), we must have \begin {align*} 1 + 2 \cos \theta & \geq 0 \\ \cos \theta & \geq -\frac {1}{2}, \end {align*}
which means \(-\frac {2}{3} \pi \leq \theta \leq \frac {2}{3}\pi \).
The two curves meet when \begin {align*} 2 \cos ^2 \theta - 2 \cos \theta & = 0 \\ \cos \theta (\cos \theta - 1) & = 0, \end {align*}
which is when \(\cos \theta = 0\) or \(\cos \theta = 1\).
For \(\cos \theta = 0\), this means \(\theta = \pm \frac {\pi }{2}\), and \(r = 1\). For this value of \(\theta \), the two curves cross.
For \(\cos \theta = 1\), this means \(\theta = 0\), and \(r = 3\). For this value of \(\theta \), the two curves touch.
\(a = 5\). For \(r_1\), \(r \geq 0\) for all \(\theta \).
The two curves meet when \begin {align*} 2 \cos ^2 \theta - 2 \cos \theta & = 4 \\ \cos ^2 \theta - \cos \theta - 2 & = 0 \\ (\cos \theta - 2) (\cos \theta + 1) & = 0, \end {align*}
which is when \(\cos \theta = -1\), since \(\cos \theta \neq 2\).
For \(\cos \theta = -1\), this means \(\theta = \pi \), and \(r = 3\). For this value of \(\theta \), the two curves touch.
When \(\theta = 0\), \(r_1 = 5 + 2 = 7\), and \(r_2 = 2 + 1 = 3\). When \(\theta = \pm \frac {1}{2}\pi \), \(r_1 = 5 + 2 \cos \pm \frac {1}{2}\pi = 5\), \(r_2 = 2 + \cos \pm \pi = 1\).