\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2017.3.7 Question 7

\begin {align*} \frac {x^2}{a^2} + \frac {y^2}{b^2} & = \left (\frac {1-t^2}{1+t^2}\right )^2 + \left (\frac {2t}{1+t^2}\right )^2 \\ & = \frac {\left (1 - t^2\right )^2 + \left (2t\right )^2}{\left (1 + t^2\right )^2} \\ & = \frac {1 - 2t^2 + t^4 + 4t^2}{\left (1 + t^2\right )^2} \\ & = \frac {1 + 2t^2 + t^4}{\left (1 + t^2\right )^2} \\ & = \frac {\left (1 + t^2\right )^2}{\left (1 + t^2\right )^2} \\ & = 1 \end {align*}

as desired, so \(T\) lies on the ellipse \(\frac {x^2}{a^2} + \frac {y^2}{b^2} = 1\).

  1. The gradient of \(L\) must satisfy that \begin {align*} \frac {\Diff y}{\Diff x} & = \frac {\Diff y / \Diff t}{\Diff x / \Diff t} \\ & = \frac {b}{a} \cdot \frac {\Diff \left (2t/(1+t^2)\right ) / \Diff t}{\Diff \left ((1-t^2)/(1+t^2)\right ) / \Diff t} \\ & = \frac {b}{a} \cdot \frac {2 \cdot (1+t^2) - 2t \cdot 2t}{-2t \cdot (1+t^2) - (1-t^2) \cdot 2t} \\ & = \frac {b}{a} \cdot \frac {2 + 2t^2 - 4t^2}{-2t - 2t^3 - 2t + 2t^3} \\ & = \frac {b}{a} \cdot \frac {1 - t^2}{-2t}. \end {align*}

    Therefore, we have a general point \((X, Y) \in L\) satisfy that \begin {align*} Y - \frac {2bt}{1+t^2} & = \frac {b}{a} \cdot \frac {1 - t^2}{-2t} \cdot \left (X - \frac {a(1-t^2)}{1+t^2}\right ) \\ (1+t^2)Y - 2bt & = \frac {b}{a} \cdot \frac {1-t^2}{-2t} \cdot \left ((1+t^2)X - a(1-t^2)\right ) \\ (-2at)(1+t^2)Y - (-2at)(2bt) & = b \cdot (1-t^2) \cdot \left ((1+t^2)X - a(1-t^2)\right ) \\ (-2at)(1+t^2)Y & = b(1-t^2)(1+t^2)X - ab(1-t^2)^2 - 4abt^2 \\ (-2at)(1+t^2)Y & = b(1-t^2)(1+t^2)X - ab(1+t^2)^2 \\ -2atY & = b(1-t^2)X - ab(1+t^2) \\ ab(1+t^2) -2atY - b(1-t^2)X & = 0 \\ (a + X)bt^2 - 2aYt + b(a-X) & = 0 \end {align*}

    as desired.

    Now if we fix \(X, Y\) and solve for \(t\), there are two solutions to this quadratic equation exactly when \begin {align*} (2aY)^2 - 4(a+X)b \cdot b(a-X) & >0 \\ (aY)^2 - (a+X)(a-X)b^2 & >0 \\ a^2Y^2 & > (a^2-X^2)b^2, \end {align*}

    which corresponds to two distinct points on the ellipse.

    Since \(a^2 Y^2 > (a^2 - X^2) b^2\), we have \(\frac {Y^2}{b^2} > 1 - \frac {X^2}{a^2}\) by dividing through \(a^2 b^2\) on both sides, i.e. \[ \frac {X^2}{a^2} + \frac {Y^2}{b^2} > 1, \] which means when the point \((X, Y)\) lies outside the ellipse.

    This also holds when \(X^2 = a^2\), i.e. when the point \((X, Y)\) lies on the pair of lines \(X = \pm A\). Here, the condition is simply \(a^2 Y^2 > 0\), which gives \(Y \neq 0\). One of the tangents will be the vertical line \(X = \pm A\) (whichever one the point lies on), and the other one as a non-vertical (as shown when \(X = a\), the tangents being \(L_1\) and \(L_2\)).

    xyxx(LX1==,Ya−,L a)2

  2. By Vieta’s Theorem, we have \[ pq = \frac {b(a-X)}{b(a+X)} \implies (a+X) pq = a-X, \] as desired, and \[ p + q = -\frac {-2aY}{(a+X)b} = \frac {2aY}{(a+X)b}. \]

    Let \(X = 0\) for the equation in \(L\), \begin {align*} abt^2 - 2aYt + ba & = 0 \\ bt^2 - 2Yt + b & = 0 \\ Y & = \frac {b(1+t^2)}{2t}. \end {align*}

    Therefore, \begin {align*} y_1 + y_2 & = \frac {b(1+p^2)}{2p} + \frac {b(1+q^2)}{2q} \\ & = \frac {b\left [(1+p^2)q + (1+q^2)p\right ]}{2pq} \\ & = 2b, \end {align*}

    therefore we have \[ 4pq = (1+p^2)q + (1+q^2)p = (p+q)(1 + pq). \]

    Therefore, \begin {align*} 4 \cdot \frac {a-X}{a+X} & = \frac {2aY}{(a+X)b} \cdot \frac {2a}{a+X} \\ a-X & = \frac {a^2 Y}{b(a+X)} \\ (a-X)(a+X)b & = a^2Y \\ (a^2 - X^2) b & = a^2 Y \\ 1 - \frac {X^2}{a^2} & = \frac {Y}{b} \\ \frac {X^2}{a^2} + \frac {Y}{b} & = 1, \end {align*}

    as desired.