\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2015.3.3 Question 3

  1. We prove the first part by contradiction. Assume that \(\sec \theta \ngtr 0\), this means \(\sec \theta \leq -1\).

    But in this case, \[ r - a \sec \theta \geq r + a \geq a > b, \] but \(\abs *{r - a \sec \theta } = b\), implies \(r - a \sec \theta \leq b\), and this leads to a contradiction.

    This implies that \(\sec \theta > 0\). Hence, \(\cos \theta > 0\), and \(\theta \in \left (-\frac {\pi }{2}, \frac {\pi }{2}\right )\).

    We aim to show that \(\abs *{r - a \sec \theta } = b\) lies on the conchoid of Nicomedes where \(L: x = a\) and \(d = b\), with \(A(0, 0)\).

    Let \(O\) be the origin, \(P_{\theta }(a, a \tan \theta )\) and \(P_0(a, 0)\). All points on the half-line \(OP_{\theta }\) will have argument \(\theta \).

    xyOPP𝜃aaQQbbL0𝜃s𝜃𝜃 :(a(aec,1,2 x,,0a𝜃=)taan 𝜃)

    Let \(Q_{\theta }\) be the points on such line, satisfying the given equation \(\abs *{r - a \sec \theta } = b\).

    For every \(\theta \in \left (-\frac {\pi }{2}, \frac {\pi }{2}\right )\), we have \[ \abs *{OP_{\theta }} = \abs *{OP_0} \sec \theta = a \sec \theta . \]

    The given equation \(\abs *{r - a \sec \theta } = b\) simplifies to \(r = a \sec \theta \pm b\).

    This implies that \(Q_{\theta }\) must lie on the half-line \(OP_{\theta }\) through \(O\), and a fixed distance \(b\) away measured along \(OP_{\theta }\) from line \(L: x = a\) (which is measured from \(P_{\theta }\)).

    This is precisely the definition of a conchoid of Nicomedes, and this finishes our proof.

    xyOLbbP :0 x(a,=0)a

  2. The sketch is as below.

    xyOLbbP0:( xa =,0a)

    When \(\sec \theta < 0\), \(\sec \theta \leq -1\). We have \(r = a \sec \theta \pm b\).

    Since \(r \geq 0\), we must have \(r = a \sec \theta + b \geq 0\) (since if \(r = a \sec \theta - b\), then \(r < 0\)), and hence \[ -1 \geq \sec \theta \geq -\frac {b}{a}, -1 \leq \cos \theta \leq -\frac {a}{b}, \] which means the area of the loop is given by the range of \[ \theta \in \left (-\pi , -\arccos \left (-\frac {a}{b}\right )\right ] \cup \left [\arccos \left (-\frac {a}{b}\right ), \pi \right ]. \]

    Therefore, the area of the loop is given by \[ A = \frac {1}{2}\left [\int _{-\pi }^{-\arccos \left (-\frac {a}{b}\right )} r^2 \Diff {\theta } + \int _{\arccos \left (-\frac {a}{b}\right )}^{\pi } r^2 \Diff {\theta }\right ]. \]

    Notice that \begin {align*} \int r^2 \Diff \theta & = \int \left (a^2 \sec ^2\theta + 2ab \sec \theta + b^2\right ) \Diff {\theta } \\ & = a^2 \tan \theta + 2ab \ln \abs *{\sec \theta + \tan \theta } + b^2\theta + C \\ & = \tan \theta + 4\ln \abs *{\sec \theta +\tan \theta } + 4\theta + C, \end {align*}

    and \[ \alpha = \arccos \left (-\frac {a}{b}\right ) = \arccos \left (-\frac {1}{2}\right ) = \frac {2\pi }{3}. \]

    Therefore, \begin {align*} A & = \frac {1}{2}\left [\int _{-\pi }^{-\arccos \left (-\frac {a}{b}\right )} r^2 \Diff {\theta } + \int _{\arccos \left (-\frac {a}{b}\right )}^{\pi } r^2 \Diff {\theta }\right ] \\ & = \frac {1}{2} \left [\left (\tan \theta + 4\ln \abs *{\sec \theta +\tan \theta } + 4\theta \right )^{-\frac {2\pi }{3}}_{-\pi } + \left (\tan \theta + 4\ln \abs *{\sec \theta +\tan \theta } + 4\theta \right )^{\pi }_{\frac {2\pi }{3}}\right ] \\ & = \frac {1}{2} \left [\left (\sqrt {3} + 4\ln \abs *{-2+\sqrt {3}} - \frac {8\pi }{3}\right ) - \left (0 + 4\ln \abs *{-1} - 4\pi \right )\right . \\ & \phantom {=} \left .+ \left (0 + 4\ln \abs *{-1} + 4\pi \right ) - \left (-\sqrt {3} + 4\ln \abs *{-2-\sqrt {3}} + \frac {8\pi }{3}\right )\right ] \\ & = \frac {1}{2} \left (2\sqrt {3} - \frac {16\pi }{3} + 8\pi \right ) + 2\ln (2 - \sqrt {3}) - 2\ln (2 + \sqrt {3}) \\ & = \frac {4}{3}\pi + \sqrt {3} + 2\ln \left (\frac {2 - \sqrt {3}}{2 + \sqrt {3}}\right ) \\ & = \frac {4}{3}\pi + \sqrt {3} + 4\ln (2 - \sqrt {3}). \end {align*}