\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2014.3.8 Question 8

Notice that there are \((k^{n + 1} - 1) - k^n + 1 = k^{n + 1} - k^n = k^n (k - 1)\) items in the summation. By the monotonic condition of the sequence in the question, we know that all the elements in the sum are greater than or equal to \(f(k^n)\) and less than \(f(k^{n + 1})\). This immediately proves the inequality.

  1. Let \(k = 2\). Since \(f\) is decreasing, we know that for all non-negative \(n\), we have \[ 2^n \cdot (2 - 1) \cdot \frac {1}{2^{n + 1}} \leq \sum _{r = 2^n}^{2^{n + 1} - 1} \frac {1}{r} \leq 2^n \cdot (2 - 1) \cdot \frac {1}{2^{n}}, \] which simplifies to \[ \frac {1}{2} 1 \leq \sum _{r = 2^n}^{2^{n + 1} - 1} \frac {1}{r} \leq 1. \]

    Summing this from \(n = 0\) to \(n = N\) (which contains \((N + 1)\) such inequalities) yields \[ \frac {N + 1}{2} \leq \sum _{r = 1}^{2^{N + 1 - 1}} \frac {1}{r} \leq N + 1, \] as desired.

    We can show that this sum can be arbitrarily big by letting \(N \to \infty \), and the lower bound of the sum \(\frac {N + 1}{2} \to \infty \). This means the infinite sum must diverge.

  2. Let \(k = 2\). Since \(f\) is decreasing, we know that for all non-negative \(n\), we have \[ \sum _{r = 2^n}^{2^{n + 1} - 1} \frac {1}{r^3} \leq 2^n \cdot (2 - 1) \cdot \frac {1}{(2^{n})^3} = \frac {1}{2^{2n}} = \frac {1}{4^n}. \]

    Summing this from \(n = 0\) up to \(n = N\) gives \[ \sum _{r = 1}^{2^{N + 1} - 1} \frac {1}{r^3} \leq \sum _{n = 0}^{N} \frac {1}{4^n} = \frac {1 - \frac {1}{4^N}}{1 - \frac {1}{4}} = \frac {4}{3} \cdot \left (1 - \frac {1}{4^{N + 1}}\right ). \]

    Let \(N \to \infty \), the weak inequality remains. This gives \[ \sum _{r = 1}^{\infty } \frac {1}{r^3} \leq \frac {4}{3} \cdot 1 = \frac {4}{3} \] as desired.

  3. Using a probabilistic argument, from the set of three-digit non-negative integers (allowing leading-zeros) \(\{0, 1, 2, \ldots , 999\}\), each digit has a \(\frac {1}{10}\) chance of being \(2\), and hence \(\frac {9}{10}\) chance of not being \(2\). This means that the number of elements in this set not being \(2\) is equal to \[ 10^3 \cdot \left (\frac {9}{10}\right )^n = 9^3. \]

    But \(0\) is counted in the \(9^3\) as well, which is not included in \(S(1000)\). Therefore, \(S(1000) = 9^3 - 1\).

    This method applies in general to \(n\)-digit numbers and for \(S(10^n) = 9^n - 1\) as well.

    Let \(f(i)\) be the \(i\)-th integer not having \(2\) in the decimal expansion in increasing order, and hence \[ S(n) = \{f(i) \mid i \in \NN , f(i) < n\}, \] and \[ \sigma (n) = \sum _{i = 1}^{S(n)} \frac {1}{f(i)}. \]

    Let \(k = 9\). Notice that \(f(9^n) = f(S(10^n) + 1) = 10^n\) since \(10^n\) is must be the next number satisfying the condition. Also, since \(f\) must be increasing on the integers, we have \(x \mapsto \frac {1}{f(x)}\) is decreasing on the integers, and hence, for non-negative integers \(n\) \[ \sum _{r = 9^n}^{9^{n + 1} - 1} \frac {1}{f(r)} \leq 9^n (9 - 1) \frac {1}{f(9^n)} = 8 \cdot \left (\frac {9}{10}\right )^n. \]

    Summing this from \(n = 0\) to \(n = N\) gives \[ \sigma (10^{N + 1}) = \sum _{r = 0}^{9^{N + 1} - 1} \frac {1}{f(r)} \leq 8 \sum _{n = 0}^{N} \left (\frac {9}{10}\right )^n = 80 \left [1 - \left (\frac {9}{10}\right )^{N + 1} \right ] < 80. \]

    For all \(n \in \NN \), there exists \(N \in \NN \) such that \(10^{N + 1} \geq n\), and since \(\sigma \) is increasing, we must have \(80 > \sigma (10^{N + 1}) \geq \sigma (n)\), which finishes the proof.