\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)
For \(1 \leq r \leq \sqrt {2}\), the diagram looks as follows.
The angle between the (shallower) radius which just intersects the square and \(x\) axis is given by \(\arccos \frac {1}{r}\), and so is the one steeper and the \(y\)-axis.
Hence, the cumulative distribution function is given by \begin {align*} \Prob (R \leq r) & = \frac {\text {shaded area}}{1^2} \\ & = \text {shaded area} \\ & = \frac {1}{2} \cdot r^2 \cdot \left (\frac {\pi }{2} - 2 \arccos \frac {1}{r}\right ) + 2 \cdot \frac {1}{2} \cdot 1 \cdot \sqrt {r^2 - 1} \\ & = \sqrt {r^2 - 1} + \frac {\pi r^2}{4} - r^2 \arccos \frac {1}{r}, \end {align*}
as desired.
For \(0 \leq r \leq 1\), the diagram is as follows.
Hence, \[ \Prob (R \leq r) = \text {shaded area} = \frac {\pi r^2}{4}. \]
Hence, the cumulative distribution function is given by \[ \Prob (R \leq r) = \begin {cases} 0, & r < 0, \\ \frac {\pi r^2}{4}, & 0 \leq r < 1, \\ \sqrt {r^2 - 1} + \frac {\pi r^2}{4} - r^2 \arccos \frac {1}{r}, & 1 \leq r < 2, \\ 1, & 2 \leq r. \end {cases} \]
Let \(f\) be the probability density function of \(R\). Hence, by differentiating, for \(0 \leq r \leq \sqrt {2}\), it is given by \begin {align*} f(r) & = \DiffOp {r} \Prob (R \leq r) \\ & = \begin {cases} \frac {\pi r}{2}, & 0 \leq r \leq 1, \\ \frac {r}{\sqrt {r^2 - 1}} + \frac {\pi r}{2} - 2r \arccos \frac {1}{r} - \frac {1}{\sqrt {1 - \left (\frac {1}{r}\right )^2}}, & 1 \leq r \leq \sqrt {2}, \end {cases} \\ & = \begin {cases} \frac {\pi r}{2}, & 0 \leq r \leq 1, \\ \frac {\pi r}{2} - 2 r \arccos \frac {1}{r}, & 1 \leq r \leq \sqrt {2}. \end {cases} \end {align*}
Hence, the expectation is given by \begin {align*} \Expt (R) & = \int _{0}^{1} r \cdot \frac {\pi r}{2} \Diff r + \int _{1}^{\sqrt {2}} r \cdot \left [\frac {\pi r}{2} - 2r \arccos \frac {1}{r}\right ] \Diff r \\ & = \int _{0}^{\sqrt {2}} \frac {\pi r^2}{2} \Diff r - 2 \int _{1}^{\sqrt {2}} r^2 \arccos \frac {1}{r} \Diff r \\ & = \left [\frac {\pi r^3}{6}\right ]_{0}^{\sqrt {2}} - \frac {2}{3} \int _{1}^{\sqrt {2}} \arccos \frac {1}{r} \Diff r^3 \\ & = \frac {2 \sqrt {2} \pi }{6} - \frac {2}{3} \left [\arccos \frac {1}{r} \cdot r^3\right ]_{1}^{\sqrt {2}} + \frac {2}{3} \int _{1}^{\sqrt {2}} r^3 \Diff \arccos \frac {1}{r} \\ & = \frac {\sqrt {2} \pi }{3} - \frac {2}{3} \cdot \arccos \frac {1}{\sqrt {2}} \cdot 2 \sqrt {2} + \frac {2}{3} \cdot \arccos 1 \cdot 1+ \frac {2}{3} \cdot \int _{1}^{\sqrt {2}} r^3 \cdot \left (- \frac {1}{r^2}\right ) \cdot \left (- \frac {1}{\sqrt {1 - \left (\frac {1}{r}\right )^2}}\right ) \Diff r \\ & = \frac {\sqrt {2} \pi }{3} - \frac {2}{3} \cdot \frac {\pi }{4} \cdot 2\sqrt {2} + \frac {2}{3} \int _{1}^{\sqrt {2}} r \cdot \frac {r}{\sqrt {r^2 - 1}} \Diff r \\ & = \frac {\sqrt {2} \pi }{3} - \frac {\sqrt {2} \pi }{3} + \frac {2}{3} \int _{1}^{\sqrt {2}} \frac {r^2}{\sqrt {r^2 - 1}} \Diff r \\ & = \frac {2}{3} \int _{1}^{\sqrt {2}} \frac {r^2}{\sqrt {r^2 - 1}} \Diff r, \end {align*}
as desired.
To integrate this, we let \(r = \cosh t\), and hence \(\DiffFrac {r}{t} = \sinh t\). When \(r = 1\), \(t = 0\). When \(r = \sqrt {2}\), \(t = \ln \left (\sqrt {2} + \sqrt {\sqrt {2}^2 - 1}\right ) = \ln (\sqrt {2} + 1)\).
Hence, \begin {align*} \Expt (R) & = \frac {2}{3} \int _{1}^{\sqrt {2}} \frac {r^2}{\sqrt {r^2 - 1}} \Diff r \\ & = \frac {2}{3} \int _{0}^{\ln (\sqrt {2} + 1)} \frac {\cosh ^2 t}{\sinh t} \cdot \sinh t \Diff t \\ & = \frac {2}{3} \int _{0}^{\ln (\sqrt {2} + 1)} \cosh ^2 t \Diff t \\ & = \frac {2}{3} \int _{0}^{\ln (\sqrt {2} + 1)} \frac {e^{2t} + e^{-2t} + 2}{4} \Diff t \\ & = \frac {1}{2} \left [e^{2t} - e^{-2t}\right ]_{0}^{\ln (\sqrt {2} + 1)} + \frac {1}{3} \left [t\right ]_{0}^{\ln (\sqrt {2} + 1)} \\ & = \frac {1}{12} \cdot \left [(\sqrt {2} + 1)^2 - (\sqrt {2} + 1)^{-2} - e^{2 \cdot 0} + e^{-2 \cdot 0}\right ] + \frac {1}{3} \cdot \left (\ln (\sqrt {2} + 1) - 0\right ) \\ & = \frac {1}{2} \left [2 + 1 + 2\sqrt {2} - (\sqrt {2} - 1)^2\right ] + \frac {1}{3} \ln (\sqrt {2} + 1) \\ & = \frac {1}{2} \cdot 4 \sqrt {2} + \frac {1}{3} \ln (\sqrt {2} + 1) \\ & = \frac {1}{3} \left (\sqrt {2} + \ln \left (\sqrt {2} + 1\right )\right ), \end {align*}
as desired.