\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2024.3.2 Question 2

    1. We have \[ \sqrt {4x^2 - 8x + 64} \leq \abs *{x + 8} \iff 0 \leq 4x^2 - 8x + 64 \leq (x + 8)^2. \]

      The left inequality can be simplified as follows: \begin {align*} 4x^2 - 8x + 64 & \geq 0 \\ x^2 - 2x + 16 & \geq 0 \\ (X - 1)^2 + 15 & \geq 0, \end {align*}

      which is always true.

      The right inequality can be simplified as follows: \begin {align*} 4x^2 - 8x + 64 & \leq (x + 8)^2 \\ 4x^2 - 8x + 64 & \leq x^2 + 16x + 64 \\ 3x^2 - 24 x & \leq 0 \\ x (x - 8) & \leq 0, \end {align*}

      which solves to \(0 \leq x \leq 8\).

      Hence, the solution to the original inequality is \(x \in [0, 8]\).

    2. WE have \[ \sqrt {4x^2 - 8x + 64} \leq \abs *{3x - 8} \iff 0 \leq 4x^2 - 8x + 64 \leq (3x - 8)^2. \]

      The left inequality is always true from the previous part.

      The right inequality can be simplified as follows: \begin {align*} 4x^2 - 8x + 64 & \leq (3x - 8)^2 \\ 4x^2 - 8x + 64 & \leq 9x^2 - 48x + 64 \\ 5x^2 - 40x & \geq 0 \\ x (x - 8) & \geq 0, \end {align*}

      which solves to \(x \leq 0\) or \(x \geq 8\).

      Hence, the solution to the original inequality is \(x \in (-\infty , 0] \cup [8, \infty )\).

    1. We have \begin {align*} \left (\sqrt {4x^2 - 8x + 64} + 2(x - 1)\right )f(x) & = \left (\sqrt {4x^2 - 8x + 64}\right )^2 - [2 (x - 1)]^2 \\ & = \left (4x^2 - 8x + 64\right ) - 4 \left (x^2 - 2x + 1\right ) \\ & = \left (4x^2 - 8x + 64\right ) - \left (4x^2 - 8x + 4\right ) \\ & = 60. \end {align*}

      Hence, \[ f(x) = \frac {60}{\sqrt {4x^2 - 8x + 64} + 2 (x - 1)}. \]

      As \(x \to \infty \), \(\sqrt {4x^2 - 8x + 64} \to \infty \), \(2 (x - 1) \to \infty \).

      Hence, \(f(x) \to 0\) as \(x \to \infty \).

    2. Let \(f_1(x) = \sqrt {4x^2 - 8x + 64}\), \(f_2(x) = 2 (x - 1)\).

      \(f_1(0) = \sqrt {64} = 8\), and \(f_2(0) = 2 \cdot (-1) = -2\).

      We have \(f(x) = f_1(x) - f_2(x) > 0\) from the previous part, and that \(f_1(x)\) is defined for all \(x\) and is always positive.

      Furthermore, \[ f_1(x) = 2 \sqrt {x^2 - 2x + 16} = 2 \sqrt {(x - 1)^2 + 15}, \] and hence \(f_1\) decreases on \((-\infty , 1)\) and increases on \((1, \infty )\), taking a minimum of \(f_1(1) = 2 \sqrt {15}\).

      In terms of symmetry, we have \(f_1(1 - x) = f_1(1 + x)\) and \(f_2(1 - x) = - f_2(1 + x)\). \(f_2\) is an asymptote to \(f_1\) as \(x \to \infty \), and \(-f_2\) is an asymptote to \(f_1\) as \(x \to -\infty \).

      Hence, the sketch looks as follows.

      xyyyy(0(2(0(2(1822−12O = = =,,,,,√ 2−28821√22)))√54((21xx1)52−−)−1x))8x+-64

  1. Let \(x = 3\), and we must have \(\sqrt {4 \cdot 9 - 5 \cdot 3 + 4} = \abs *{3m + c}\), and hence \(5 = \abs *{3m + c}\).

    This is only achievable for \(m = \pm 2\) due to the diagram – the solution set can only be ’one-sided’ if on the other side the absolute value is eventually ’parallel’ to the curve.

    We let \(m = 2\), and hence \(5 = \abs *{6 + c}\), which gives \(c = -1\) or \(c = -11\).

    We would like to show that the desired value is \(c = -1\), and that \(c = -11\) does not work. \[ \sqrt {4x^2 - 5x + 4} \leq \abs *{2x - 1} \iff 0 \leq 4x^2 - 5x + 4 \leq (2x - 1)^2. \]

    The left inequality can be simplified as \[ 0 \leq 4x^2 - 5x + 4 = \left (2x - \frac {5}{4}\right )^2 + \frac {39}{16}, \] and hence is always true.

    The right inequality can be simplified as \begin {align*} 4x^2 - 5x + 4 & \leq (2x - 1)^2 \\ 4x^2 - 5x + 4 & \leq 4x^2 - 4x + 1 \\ x & \geq 3, \end {align*}

    and hence the solution set to the whole inequality is \(x \geq 3\) as desired.

    On the other hand, for the case of \(c = -11\), we have \[ \sqrt {4x^2 - 5x + 4} \leq \abs *{2x - 11} \iff 0 \leq 4x^2 - 5x + 4 \leq (2x - 11)^2, \] and the left inequality is always true by previously. However, the right inequality simplifies as \begin {align*} 4x^2 - 5x + 4 & \leq (2x - 11)^2 \\ 4x^2 - 5x + 4 & \leq 4x^2 - 44x + 121 \\ 39x & \leq 117 \\ x & \leq 3, \end {align*}

    and the inequality is in the wrong direction.

    Hence, a possible value of \(m\) is \(2\), and the corresponding value of \(c\) is \(-1\).

  2. The diagram as follows shows the only possibility of the configuration.

    xyOyy−157 5== ||xm2x ++pxc + q||

    Hence, we must have \(x^2 + px + q = mx + c\) for \(x = -5\) and \(x = 7\), and \(x^2 + px + q = -mx - c\) for \(x = 1\) and \(x = 5\). \[ \left \{ \begin {aligned} 25 - 5p + q & = -5m + c, \\ 49 + 7p + q & = 7m + c, \\ 1 + p + q & = - (m + c), \\ 25 + 5p + q & = - (5m + c). \end {aligned} \right . \]

    Subtracting the first equation from the final equation gives \(10 p = -2c\), and hence \(c = -5p\).

    Subtracting the first equation from the second equation gives us \(24 + 12 p = 12 m\), and hence \(m = 2 + p\).

    Putting these into the third equation gives \begin {align*} q & = -m - c - ; - 1 \\ & = - (2 + p) - (-5p) - p - 1 \\ & = 3p - 3. \end {align*}

    Putting all these into the final equation gives \begin {align*} 25 + 5p + (3p - 3) & = - \left [5 (2 + p) + (-5p)\right ] \\ 25 + 8p - 3 & = - (10 + 5p - 5p) \\ 22 + 8p & = -10 \\ 8p & = -32 \\ p & = -4, \end {align*}

    and so \(q = -15, m = -2, c = 20\). Hence, \[ (p, q, m, c) = (-4, -15, -2, 20). \]