2017.3.5 Question 5

Since we have x = rcos ⁑ πœƒ and y = rsin ⁑ πœƒ, and r = f(πœƒ), we have

dx dπœƒ = dr dπœƒ β‹… cos ⁑ πœƒ + r β‹… ⁑ dcos ⁑ πœƒ ⁑ dπœƒ = fβ€²(πœƒ)cos ⁑ πœƒ βˆ’ f(πœƒ)sin ⁑ πœƒ,

and

dy dπœƒ = dr dπœƒ β‹… sin ⁑ πœƒ + r β‹… ⁑ dsin ⁑ πœƒ ⁑ dπœƒ = fβ€²(πœƒ)sin ⁑ πœƒ + f(πœƒ)cos ⁑ πœƒ,

Therefore,

dy dx = dy dπœƒ dx dπœƒ = fβ€²(πœƒ)sin ⁑ πœƒ + f(πœƒ)cos ⁑ πœƒ fβ€²(πœƒ)cos ⁑ πœƒ βˆ’ f(πœƒ)sin ⁑ πœƒ = fβ€²(πœƒ)tan ⁑ πœƒ + f(πœƒ) fβ€²(πœƒ) βˆ’ f(πœƒ)tan ⁑ πœƒ.

For the two curves, we must have

dy dx |f β‹… dy dx |g = βˆ’1

for them to meet at right angles. Therefore,

fβ€²(πœƒ)tan ⁑ πœƒ + f(πœƒ) fβ€²(πœƒ) βˆ’ f(πœƒ)tan ⁑ πœƒ β‹…gβ€²(πœƒ)tan ⁑ πœƒ + g(πœƒ) gβ€²(πœƒ) βˆ’ g(πœƒ)tan ⁑ πœƒ = βˆ’1 (fβ€²(πœƒ)tan ⁑ πœƒ + f(πœƒ)) β‹… (gβ€²(πœƒ)tan ⁑ πœƒ + g(πœƒ)) = βˆ’ (fβ€²(πœƒ) βˆ’ f(πœƒ)tan ⁑ πœƒ) β‹… (gβ€²(πœƒ) βˆ’ g(πœƒ)tan ⁑ πœƒ) fβ€²(πœƒ)gβ€²(πœƒ)(1 + tan ⁑ 2πœƒ) + f(πœƒ)g(πœƒ)(1 + tan ⁑ 2πœƒ) = 0 fβ€²(πœƒ)gβ€²(πœƒ) + f(πœƒ)g(πœƒ) = 0.

We have f (βˆ’Ο€ 2 ) = 4. Let

ga(πœƒ) = a(1 + sin ⁑ πœƒ).

Therefore,

gaβ€²(πœƒ) = acos ⁑ πœƒ,

and we have

fβ€²(πœƒ)(acos ⁑ πœƒ) + f(πœƒ)a(1 + sin ⁑ πœƒ) = 0,

and therefore

df(πœƒ) dπœƒ cos ⁑ πœƒ = βˆ’f(πœƒ)(1 + sin ⁑ πœƒ).

By separating variables we have

df(πœƒ) f(πœƒ) = βˆ’dπœƒ(1 + sin ⁑ πœƒ) cos ⁑ πœƒ .

Notice that

βˆ’1 + sin ⁑ πœƒ cos ⁑ πœƒ = βˆ’(1 βˆ’ sin ⁑ πœƒ)(1 + sin ⁑ πœƒ) (1 βˆ’ sin ⁑ πœƒ)cos ⁑ πœƒ = βˆ’ cos ⁑ πœƒ 1 βˆ’ sin ⁑ πœƒ = cos ⁑ πœƒ sin ⁑ πœƒ βˆ’ 1,

integrating both sides gives us

ln ⁑ f(πœƒ) = ln ⁑ |sin ⁑ πœƒ βˆ’ 1| + C = ln ⁑ (1 βˆ’ sin ⁑ πœƒ) + C,

which gives

f(πœƒ) = A(1 βˆ’ sin ⁑ πœƒ).

Since f (βˆ’Ο€ 2 ) = 4, we have 2A = 4 and A = 2, therefore f(πœƒ) = 2(1 βˆ’ sin ⁑ πœƒ).

xyrrr = = = 142+((11s+βˆ’inssπœƒinin πœƒπœƒ))