\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)

2020.3.6 Question 6

  1. Note that this function has symmetry about the \(y\)-axis since \(\cos \) is an even function.

    When \(x = 0\), \(y = 1 + \sqrt {1} = 2\). When \(x = \pm \frac {\pi }{4}\), \(y = \frac {1}{\sqrt {2}}\).

    We investigate the gradient: \begin {align*} \DiffFrac {y}{x} & = - \sin x - 2 \sin 2x \cdot \frac {1}{2} \cdot \frac {1}{\sqrt {\cos 2x}} \\ & = - \sin x - \frac {\sin 2x}{\sqrt {\cos 2x}}, \end {align*}

    so \(\DiffFrac {y}{x}\) takes opposite sign as \(x\), which means that \(y\) is decreasing when \(x > 0\), and \(y\) is increasing when \(x < 0\), and \(x = 0\) gives a maximum.

    Also, note that \[ \lim _{x \to \frac {\pi }{4}^{-}} \DiffFrac {y}{x} = -\infty , \lim _{x \to -\frac {\pi }{4}^{+}} \DiffFrac {y}{x} = \infty , \] which means the tangent to the graph at those points are vertical.

    Hence, the graph looks as follows:

    xy2xx = = −ππ
    44

  2. The graph looks as follows.

    𝜃𝜃𝜃2 = = = 0−π4π4

  3. By solving the quadratic, we have \[ r = \frac {2\cos \theta \pm \sqrt {4 \cos ^2 \theta - 4 \sin ^2 \theta }}{2} = \cos \theta \pm \sqrt {\cos 2 \theta }. \]

    Hence, at \(\theta = \pm \frac {1}{4}\pi , r = \frac {1}{\sqrt {2}}\).

    When \(r\) is small, we must have that \(r = \cos \theta - \sqrt {\cos 2 \theta }\) and \(\theta \) is small, and \begin {align*} -2r \cos \theta + \sin ^2 \theta & \approx 0 \\ r & \approx \frac {\sin ^2 \theta }{2 \cos \theta } \\ r & \approx \frac {1}{2} \sin \theta \tan \theta \\ r & \approx \frac {1}{2} \theta ^2, \end {align*}

    as desired.

    The curve will look as follows. At \(\theta = \pm \frac {1}{4}\pi \), the curve is tangent to the lines. At \(r = 0\), the curves are tangent to the initial line.

    𝜃𝜃𝜃2 = = = 0−π4π4

    The area between \(C_2\) and \(\theta = 0\) above the line is given by \begin {align*} A & = \frac {1}{2} \int _{0}^{\frac {\pi }{4}} \left [\left (\cos \theta + \sqrt {\cos 2\theta }\right )^2 - \left (\cos \theta - \sqrt {\cos 2\theta }\right )^2\right ]\Diff \theta \\ & = \frac {1}{2} \int _{0}^{\frac {\pi }{4}} 4 \cos \theta \sqrt {\cos 2\theta } \Diff \theta \\ & = 2 \int _{0}^{\frac {\pi }{4}} \cos \theta \sqrt {\cos 2\theta } \Diff \theta \\ & = 2 \int _{0}^{\frac {\pi }{4}} \cos \theta \sqrt {1 - 2 \sin ^2 \theta } \Diff \theta \\ & = 2 \int _{0}^{\frac {\pi }{4}} \sqrt {1 - 2 \sin ^2 \theta } \Diff \sin \theta \\ & = 2 \int _{0}^{\frac {1}{\sqrt {2}}} \sqrt {1 - 2x^2} \Diff x \\ & = \sqrt {2} \int _{0}^{1} \sqrt {1 - y^2} \Diff y \\ & = \sqrt {2} \cdot \frac {\pi }{4} \\ & = \frac {\pi }{2 \sqrt {2}}, \end {align*}

    as desired, the final integral being because this is \(\frac {1}{4}\) of the area of the unit circle, which is \(\pi \).