\(% Differentiation % https://tex.stackexchange.com/a/60546/ \newcommand{\Diff}{\mathop{}\!\mathrm{d}} \newcommand{\DiffFrac}[2]{\frac{\Diff #1}{\Diff #2}} \newcommand{\DiffOp}[1]{\frac{\Diff}{\Diff #1}} \newcommand{\Ndiff}[1]{\mathop{}\!\mathrm{d}^{#1}} \newcommand{\NdiffFrac}[3]{\frac{\Ndiff{#1} #2}{\Diff {#3}^{#1}}} \newcommand{\NdiffOp}[2]{\frac{\Ndiff{#1}}{\Diff {#2}^{#1}}} % Evaluation \newcommand{\LEvalAt}[2]{\left.#1\right\vert_{#2}} \newcommand{\SqEvalAt}[2]{\left[#1\right]_{#2}} % Epsilon & Phi \renewcommand{\epsilon}{\varepsilon} \renewcommand{\phi}{\varphi} % Sets \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\CC}{\mathbb{C}} \newcommand{\PP}{\mathbb{P}} \renewcommand{\emptyset}{\varnothing} % Probabililty \DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\Corr}{Corr} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Expt}{E} \DeclareMathOperator{\Prob}{P} % Distribution \DeclareMathOperator{\Binomial}{B} \DeclareMathOperator{\Poisson}{Po} \DeclareMathOperator{\Normal}{N} \DeclareMathOperator{\Exponential}{Exp} \DeclareMathOperator{\Geometric}{Geo} \DeclareMathOperator{\Uniform}{U} % Complex Numbers \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\re}{Re} % Missing Trigonometric & Hyperbolic functions \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\artanh}{artanh} \DeclareMathOperator{\arcoth}{arcoth} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} % UK Notation \DeclareMathOperator{\cosec}{cosec} \DeclareMathOperator{\arccosec}{arccosec} \DeclareMathOperator{\cosech}{cosech} \DeclareMathOperator{\arcosech}{arcosech} % Paired Delimiters \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} \DeclarePairedDelimiter{\abs}{\lvert}{\rvert} \DeclarePairedDelimiter{\ang}{\langle}{\rangle} % Vectors \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\bvect}[1]{\overrightarrow{#1}} % https://tex.stackexchange.com/a/28213 % \DeclareMathSymbol{\ii}{\mathalpha}{letters}{"10} % \DeclareMathSymbol{\jj}{\mathalpha}{letters}{"11} % \newcommand{\ihat}{\vect{\hat{\ii}}} % \newcommand{\jhat}{\vect{\hat{\jj}}} \newcommand{\ihat}{\textbf{\^{ı}}} \newcommand{\jhat}{\textbf{\^{ȷ}}} \newcommand{\khat}{\vect{\hat{k}}} % Other Functions \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\tr}{tr} % Other Math Symbols \DeclareMathOperator{\modulo}{mod} \newcommand{\divides}{\mid} \newcommand{\notdivides}{\nmid} \newcommand{\LHS}{\text{LHS}} \newcommand{\RHS}{\text{RHS}} \newcommand{\degree}{^{\circ}}\)
Notice that the original equation \[ z z^* - a z^* - a^* z + a a^* - r^2 = 0 \] can be simplified to \[ (z - a) (z^* - a^*) = r^2, \] and the left-hand side satisfies \[ (z - a) (z^* - a^*) = (z - a) (z - a)^* = \abs *{z - a}^2, \] which means the original equation is \[ \abs *{z - a}^2 = r^2, \] and hence \[ \abs *{z - a} = r. \]
This is a circle centred at \(a\) with radius \(r\).
Since \(\omega = \frac {1}{z}\), we have \(z = \frac {1}{\omega }\). Hence, \begin {align*} \frac {1}{\omega } \frac {1}{\omega ^*} - a \frac {1}{\omega ^ *} - \frac {1}{\omega } a^* + a a^* & = r^2 \\ 1 - \omega a - \omega ^* a^* + a a^* \omega \omega ^* & = r^2 \omega \omega ^* \\ (r^2 - a a^*) \omega \omega ^* + \omega a + \omega ^* a^* & = 1 \\ \omega \omega ^* + \frac {a}{r^2 - a a^*} \omega + \frac {a^*}{r^2 - a a^*} \omega ^* & = \frac {1}{r^2 - a a^*} \\ \left (\omega + \frac {a^*}{r^2 - a a^{*}}\right ) \left (\omega + \frac {a^*}{r^2 - a a^{*}}\right )^* & = \frac {1}{r^2 - a a^*} + \frac {a a*}{\left (r^2 - a a^*\right )^2} \\ \abs *{\omega - \frac {a^*}{a a^{*} - r^2}}^2 & = \frac {r^2}{\left (r^2 - a a^*\right )^2} \\ \abs *{\omega - \frac {a^*}{a a^{*} - r^2}} & = \frac {r}{\abs *{r^2 - a a^*}}, \end {align*}
so \(\omega \) is on a circle \(C'\) with centre \(\frac {a^*}{a a^{*} - r^2}\) and radius \(\frac {r}{\abs *{r^2 - a a^*}}\).
If \(C\) and \(C'\) are the same circle, we have \[ a = \frac {a^*}{a a^{*} - r^2}, r = \frac {r}{\abs *{r^2 - a a^*}}. \]
The second equation gives \(\abs *{r^2 - a a^*} = 1\), which means \(r^2 - a a^* = \pm 1\).
\begin {align*} r^2 - a a^* & = \pm 1 \\ r^2 - \abs *{a}^2 & = \pm 1 \\ \left (\abs *{a}^2 - r^2\right )^2 & = 1, \end {align*}
as desired.
When \(r^2 - a a^* = 1\), \(a = - a^*\), and hence \(a\) is pure imaginary. Since \(r^2 = 1 + \abs *{a}^2\) in this case, \(r > \abs *{a}\), so the circle must contain the origin. The diagrams are as below, with the case \(\im (a) > 0\) on the left, \(\im (a) = 0\) in the middle, and \(\im (a) < 0\) on the right:
When \(r^2 - a a^* = -1\), \(a = a^*\), and hence \(a\) is real. Since \(r^2 = -1 + \abs *{a}^2\) in this case, \(r < \abs *{a}\), so the circle cannot contain the origin, and \(\abs *{a} > 1\). The diagrams are as below, with the case \(\re (a) > 1\) on the left, and \(\re (a) < -1\) on the right:
In the case where \(\omega = \frac {1}{z^*}\), we have \(z = \frac {1}{\omega ^*}\), and hence similar to the previous one, \begin {align*} \omega \omega ^* + \frac {a}{r^2 - a a^*} \omega ^* + \frac {a^*}{r^2 - a a^*} \omega & = \frac {1}{r^2 - a a^*} \\ \left (\omega + \frac {a}{r^2 - a a^{*}}\right ) \left (\omega + \frac {a}{r^2 - a a^{*}}\right )^* & = \frac {1}{r^2 - a a^*} + \frac {a a*}{\left (r^2 - a a^*\right )^2} \\ \abs *{\omega - \frac {a}{a a^{*} - r^2}}^2 & = \frac {r^2}{\left (r^2 - a a^*\right )^2} \\ \abs *{\omega - \frac {a}{a a^{*} - r^2}} & = \frac {r}{\abs *{r^2 - a a^*}}, \end {align*}
so \(\omega \) is on a circle \(C'\) with centre \(\frac {a}{a a^{*} - r^2}\) and radius \(\frac {r}{\abs *{r^2 - a a^*}}\).
If they are the same circle, we have \[ a = \frac {a}{a a^* - r^2}, r = \frac {r}{\abs {r^2 - a a^*}}. \]
We still have \(r^2 - a a^* = \pm 1\).
When \(r^2 - a a^* = 1\), we have \(a = -a\), and \(a = 0\).
When \(r^2 - a a^* = -1\), we have \(a = a\), and \(a\) can be any complex number satisfying \(\abs *{a} = \sqrt {r^2 + 1}\).
It is not the case that \(a\) is either real or pure imaginary.