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2016.3 Question 1

Notice that

In =

∫ +∞

−∞

dx

(x2 + 2ax+ b)n
=

∫ +∞

−∞

dx

((x+ a)2 + (b− a2))n
.

1. Let x+ a =
√
b− a2 tanu. When x → −∞, u → −π

2 , and when x → +∞, u → π
2 . We have also

dx = d(x+ a) = d
√

b− a2 tanu

=
√
b− a2 d tanu

=
√

b− a2 sec2 udu.

Therefore, we have

I1 =

∫ +∞

−∞

dx

(x+ a)2 + (b− a2)

=

∫ π
2

−π
2

√
b− a2 sec2 udu(√

b− a2 tanu
)2

+ (b− a2)

=

∫ π
2

−π
2

√
b− a2 sec2 udu

(b− a2)(tan2 u+ 1)

=

∫ π
2

−π
2

sec2 udu√
b− a2 sec2 u

=

∫ π
2

−π
2

du√
b− a2

=
π√

b− a2
,

as desired.

2. Using the same substitution, we have

In =

∫ +∞

−∞

dx

[(x+ a)2 + (b− a2)]n

=

∫ π
2

−π
2

√
b− a2 sec2 udu

[(b− a2) sec2 u]
n

=
1√

b− a2

∫ π
2

−π
2

du

[(b− a2) sec2 u]
n−1 .

Therefore,
2n(b− a2)In+1 = (2n− 1)In,

is equivalent to

2n
√
b− a2

∫ π
2

−π
2

du

[(b− a2) sec2 u]
n = (2n− 1)

1√
b− a2

∫ π
2

−π
2

du

[(b− a2) sec2 u]
n−1

is equivalent to

2n(b− a2)

∫ π
2

−π
2

du

[(b− a2) sec2 u]
n = (2n− 1)

∫ π
2

−π
2

du

[(b− a2) sec2 u]
n−1

is equivalent to

2n

∫ π
2

−π
2

du

sec2n u
= (2n− 1)

∫ π
2

−π
2

du

sec2n−2 u
.
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Notice that∫ π
2

−π
2

du

sec2n−2 u
=

∫ π
2

−π
2

sec2 udu

sec2n u

=

∫ π
2

−π
2

d tanu

sec2n u

= lim
a→π

2
b→−π

2

[
tanu

sec2n u

]a
b

−
∫ π

2

−π
2

tanud sec−2n u

= lim
a→π

2
b→−π

2

[
sinu cos2n−1 u

]a
b
−
∫ π

2

−π
2

−2n secu tanu sec−2n−1 u tanudu

= 2n

∫ π
2

−π
2

tan2 udu

sec2n u

= 2n

∫ π
2

−π
2

(sec2 u− 1) du

sec2n u

= 2n

∫ π
2

−π
2

du

sec2n−2 u
− 2n

∫ π
2

−π
2

du

sec2n u
.

This means

(2n− 1)

∫ π
2

−π
2

du

sec2n−2 u
= 2n

∫ π
2

−π
2

du

sec2n u
,

which is exactly what was desired.

3. Proof by induction:

• Base Case. When n = 1,

LHS = I1 =
π√

b− a2
,

RHS =
π

22·1−2(b− a2)1−
1
2

(
2 · 1− 2

1− 1

)
=

π√
b− a2

(
0

0

)
=

π√
b− a2

.

• Induction Hypothesis. Assume for some n = k ∈ N, we have

In =
π

22n−2(b− a2)n−
1
2

(
2n− 2

n− 1

)
.

• Induction Step. When n = k + 1,

In = Ik+1

=
2k + 1

2(k + 1)(b− a2)
Ik

=
2k + 1

2(k + 1)(b− a2)
· π

22k−2(b− a2)k−
1
2

(
2k − 2

k − 1

)
=

π

22k(b− a2)k+
1
2

(2k − 2)!

(k − 1)!(k − 1)!

(2k + 1)(2k + 2)

(k + 1)2

=
π

22k(b− a2)k+
1
2

2k!

k!k!

=
π

22k(b− a2)k+
1
2

(
2k

k

)
=

π

22n−2(b− a2)n−
1
2

(
2n− 2

n− 1

)
.
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Therefore, by the principle of mathematical induction, for n ∈ N,

In =
π

22n−2(b− a2)n−
1
2

(
2n− 2

n− 1

)
,

as desired.
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2016.3 Question 2

1. For y2 = 4ax, we have x = y2

4a , and therefore

dx

dy
=

2y

4a
.

Therefore, the normal through Q, lQ satisfies that

lQ : x− aq2 = − 4a

2 · 2aq
· (y − 2aq) ,

i.e.
lQ : q(x− aq2) = − (y − 2aq) .

Since P ∈ lQ, we must have

q(ap2 − aq2) = − (2ap− 2aq)

aq(p+ q)(p− q) = −2a(p− q)

pq + q2 = −2

q2 + pq + 2 = 0

as desired.

2. We also have
r2 + pr + 2 = 0.

Since q ̸= r, q, r are the solutions to the equation

x2 + px+ 2 = 0,

and therefore q + r = −p, qr = 2.

Note that the equation for QR satisfies that

mQR =
2ar − 2aq

ar2 − aq2
=

2

r + q
.

Therefore, lQR satisfies that

lQR : y − 2aq =
2

r + q
(x− aq2)

y =
2

r + q

(
x− aq2 +

r + q

2
· 2aq

)
y =

2

r + q

(
x− aq2 + aq2 + aqr

)
y =

2

r + q
(x+ aqr)

y = −2

p
(x+ 2a).

This passes through a fixed point (−2a, 0).

3. OP has equation y = 2ap
ap2 x, which is y = 2x

p . Therefore, since T = OP ∩QR, xT must satisfy that

−2

p
(x+ 2a) =

2x

p
,

−(x+ 2a) = x

x = −a.

Therefore, yT = − 2a
p , T

(
−a,− 2a

p

)
lies on the line x = −a which is independent of p.
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The distance from the x-axis to T is
∣∣∣ 2ap ∣∣∣ = 2a

|p| .

Notice that since qr = 2, q and r must take the same parity, and therefore |p| = |q| + |r|. By the
AM-GM inequality, we have

|q|+ |r| ≥ 2
√

|q| · |r| = 2
√
2,

with the equal sign holding if and only if |q| = |r|, q = r, which is impossible.

Therefore, |p| > 2
√
2 and therefore 2a

|p| <
√
2 as desired.
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2016.3 Question 3

1. We have that

d

dx

exP (x)

Q(x)
=

Q(x) [exP ′(x) + exP (x)]−Q′(x)exP (x)

Q(x)2

= ex
[Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x)]

Q(x)2

= ex
x3 − 2

(x+ 1)2
.

Therefore, we have

[Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x)]

Q(x)2
=

x3 − 2

(x+ 1)2

(x+ 1)2 [Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x)] = Q(x)2
(
x3 − 2

)
.

If we plug in x = −1 on both sides, we have LHS = 0 and RHS = Q(−1)2 · (−3).

Therefore, Q(−1)2 = 0, Q(−1) = 0.

Since Q(x) ∈ P[x], we must have
(x+ 1) | Q(x)

as desired.

Therefore, degQ ≥ 1, degRHS = 3 + 2degQ.

If degP = −∞, P (x) = 0,LHS = 0 which is impossible.

If degP = 0, P (x) = C ∈ R\{0}, LHS = C(x+1)2Q(x), deg LHS = deg q+2, which is impossible.

Therefore, we have degP ′ = degP − 1. Hence,

degQ(x)P ′(x) = degP ′(x)Q(x) = degP + degQ− 1,

and
degQ(x)P (x) = degP + degQ.

Therefore,
deg LHS = 2 + degP + degQ = degRHS,

which gives
degP = degQ+ 1,

as desired.

When Q(x) = x+ 1, let P (x) = ax2 + bx+ c where a ̸= 0. We have P ′(x) = 2ax+ b. Therefore,

(x+ 1)2 [Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x)] = Q(x)2
(
x3 − 2

)
Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x) = x3 − 2

(x+ 1)(2ax+ b) + (x+ 1)(ax2 + bx+ c)− (ax2 + bx+ c) = x3 − 2

(x+ 1)(2ax+ b) + x(ax2 + bx+ c) = x3 − 2

ax3 + (2a+ b)x2 + (2a+ b+ c)x+ b = x3 − 2.

This solves to (a, b, c) = (1,−2, 0). Therefore, P (x) = x2 − 2x.

2. In this case, we must have that

(x+ 1) [Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x)] = Q(x)2.

Therefore, Q(x) = (x+ 1)R(x) for some R(x) ∈ P[x]. We may assume P (−1) ̸= 0.

Hence, Q′(x) = (x+ 1)R′(x) +R(x)
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Plugging this in gives us

(x+ 1)R(x)P ′(x) + (x+ 1)R(x)P (x)− [(x+ 1)R′(x) +R(x)]P (x) = (x+ 1)R(x)2,

which simplifies to

(x+ 1) [R(x)P ′(x) +R(x)P (x)−R′(x)P (x)]−R(x)P (x) = (x+ 1)R(x)2.

Let x = −1, and we can see x+ 1 divides R(x), since x+ 1 can’t divide P (x).

Therefore, let R(x) = (x+ 1)S(x), therefore R′(x) = S(x) + (x+ 1)S′(x).

This gives

(x+ 1)S(x) [P ′(x) + P (x)]− [S(x) + (x+ 1)S′(x)]P (x)− S(x)P (x) = (x+ 1)2S(x)2,

which simplifies to

(x+ 1) [S(x)P ′(x) + S(x)P (x)− S′(x)P (x)]− 2S(x)P (x) = (x+ 1)2S(x)2.

Therefore, we can see that x+ 1 divides S(x) by similar reasons.

Repeating this, we can conclude that there are arbitrarily many factors of x+ 1 in Q(x) (proof by
infinite descent), which is impossible.

Formally speaking, let Q(x) = (x+ 1)nT (x) where T (−1) ̸= 0, n ∈ N. Therefore, we have

Q′(x) = n(x+ 1)n−1T (x) + (x+ 1)nT ′(x)

= (x+ 1)n−1 [nT (x) + (x+ 1)T ′(x)] .

Therefore,
(x+ 1) [Q(x)P ′(x) +Q(x)P (x)−Q′(x)P (x)] = Q(x)2

simplifies to

(x+ 1)n+1T (x) [P ′(x) + P (x)]− (x+ 1)n [nT (x) + (x+ 1)T ′(x)]P (x) = (x+ 1)2nT (x)2,

which further simplifies to

(x+ 1) [T (x)P ′(x) + T (x)P (x)− T ′(x)P (x)]− nT (x)P (x) = (x+ 1)nT (x)2.

Now, let x = −1, we have that nT (−1)P (−1) = 0. But n ̸= 0, T (−1) ̸= 0, P (−1) ̸= 0, which gives
a contradiction.

Therefore, such P and Q do not exist.
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2016.3 Question 4

1. Notice that
1

1 + xr
− 1

1 + xr+1
=

xr+1 − xr

(1 + xr)(1 + xr+1)
=

xr(x− 1)

(1 + xr)(1 + xr+1)
.

Therefore, we have

N∑
r=1

xr

(1 + xr)(1 + xr+1)
=

N∑
r=1

1

x− 1

[
1

1 + xr
− 1

1 + xr+1

]

=
1

x− 1

N∑
r=1

[
1

1 + xr
− 1

1 + xr+1

]
=

1

x− 1

[
1

1 + x
− 1

1 + xn+1

]
.

For |x| < 1, as n → ∞, xn+1 → 0. Therefore,

∞∑
r=1

xr

(1 + xr)(1 + xr+1)
=

1

x− 1

[
1

1 + x
− 1

]
=

1

x− 1
· −x

1 + x

=
x

1− x2

as desired.

2. Notice that

sech(ry) sech((r + 1)y) =
2

ery + e−ry
· 2

e(r+1)y + e−(r+1)y

=
4e−ry−(r+1)y

(1 + e−2ry)
(
1 + e−2(r+1)y

)
= 4e−y e−2ry

(1 + e−2ry)
(
1 + e−2(r+1)y

) .
Let x = e−2y. We have

sech(ry) sech((r + 1)y) = 4e−y xr

(1 + xr) (1 + xr+1)
.

When y > 0, x = e−2y ∈ (0, 1). Therefore,

∞∑
r=1

sech(ry) sech((r + 1)y) = 4e−y e−2y

1− e−4y

= 2e−y 2

e2y − e−2y

= 2e−y cosech(2y)

as desired.

Notice that for all x ∈ R, coshx = cosh(−x), therefore sechx = sech(−x).
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Therefore,

∞∑
r=−∞

sech(ry) sech((r + 1)y)

=

∞∑
r=1

sech(ry) sech((r + 1)y) +

0∑
r=−∞

sech(ry) sech((r + 1)y)

=

∞∑
r=1

sech(ry) sech((r + 1)y) +

+∞∑
r=0

sech(−ry) sech((−r + 1)y)

=

∞∑
r=1

sech(ry) sech((r + 1)y) +

+∞∑
r=0

sech(ry) sech((r − 1)y)

=

∞∑
r=1

sech(ry) sech((r + 1)y) +

+∞∑
r=2

sech(ry) sech((r − 1)y) + sech(y) sech(0) + sech(0) sech(−y)

=

∞∑
r=1

sech(ry) sech((r + 1)y) +

+∞∑
r=1

sech((r + 1)y) sech(ry) + 2 sech y

= 4e−y cosech(2y) + 2 sech y

=
4e−y

sinh 2y
+

2

cosh y

=
2e−y

sinh y cosh y
+

2

cosh y

=
2e−y + 2 sinh y

sinh y cosh y

=
2e−y + ey − e−y

sinh y cosh y

=
ey − e−y

sinh y cosh y

=
2 cosh y

sinh y cosh y

= 2 cosech y.
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2016.3 Question 5

1. By the binomial theorem, we have

(1 + x)2m+1 =

2m+1∑
k=0

(
2m+ 1

k

)
xk.

If we let x = 1, we have

22m+1 =

2m+1∑
k=0

(
2m+ 1

k

)
.

Since
(
2m+1

m

)
is a part of the sum, and all the other terms are positive, and there are other terms

which are not
(
2m+1

m

)
(e.g.

(
2m+1

0

)
= 1), we therefore must have(

2m+ 1

m

)
< 22m+1.

2. Notice that (
2m+ 1

m

)
=

(2m+ 1)!

m!(m+ 1)!

=
(2m+ 1)(2m)(2m− 1) · · · (m+ 2)

m!

A number theory argument follows. First, notice that all terms in the product Pm+1,2m+1 are
within the numerator. Therefore, we must have

Pm+1,2m+1 | (2m+ 1)(2m)(2m− 1) · · · (m+ 2).

Next, since all the terms in the product are primes, none of the terms will therefore have factors
between 1 and m. This means that

gcd (Pm+1,2m+1,m!) = 1,

i.e. Pm+1,2m+1 are coprime.

Therefore, given that
(
2m+1

m

)
= (2m+1)(2m)(2m−1)···(m+2)

m! is an integer, we must therefore have

Pm+1,2m+1 |
(
2m+ 1

m

)
,

and hence

Pm+1,2m+1 ≤
(
2m+ 1

m

)
< 22m,

as desired.

3. Notice that

P1,2m+1 = P1,m+1 · Pm+1,2m+1

< 4m+1 · 22m

= 4m+1 · 4m

= 42m+1,

as desired.
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4. First we look at the base case when n = 2.

P1,2 = 2, 42 = 16, the original statement holds when n = 2.

Now, we use strong induction. Suppose the statement holds up to some n = k ≥ 2.

If k = 2m is even, the induction step for 2m → 2m+ 1 is already shown in the previous part.

If k = 2m+ 1 is odd, we must have that k + 1 is even. The only even prime is 2, but since k ≥ 2,
k + 1 ̸= 2, and k + 1 must be composite.

Therefore, P1,k+1 = P1,k < 4k < 4k+1. This completes the induction step.

Therefore, by strong induction, the statement P1,n < 4n holds for all n ≥ 2.
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2016.3 Question 6

• In the case where B > A > 0 or −B < −A < 0, notice that

R cosh(x+ γ) = R coshx cosh γ +R sinhx sinh γ.

Therefore, we would like R sinh γ = A and R cosh γ = B.

Since cosh γ2 − sinh γ2 = 1, we have R2 = B2 −A2.

We also have tanh γ = A
B , and therefore γ = artanh A

B .

Notice that cosh γ > 0, so R must have the same sign as B.

– If B > A > 0, R =
√
B2 −A2.

– If B < −A < 0, R = −
√
B2 −A2.

• In the case where −A < B < A, notice that

R sinh(x+ γ) = R sinh γ coshx+R cosh γ sinhx.

Therefore, we would like R cosh γ = A and R sinh γ = B.

Since cosh γ2 − sinh γ2 = 1, we have R2 = B2 −A2.

We also have tanh γ = B
A , and therefore γ = artanh B

A .

Notice that cosh γ > 0, so R will have the same sign as A, and hence R =
√
A2 −B2.

• When B = A, we have

A sinhx+B coshx = A
ex − e−x

2
+A

ex + e−x

2
= Aex.

• When B = −A, we have

A sinhx+B coshx = A
ex − e−x

2
−A

ex + e−x

2
= Ae−x.

Therefore, in conclusion,

A sinhx+B coshx =



√
B2 −A2 cosh

(
x+ artanh A

B

)
, 0 < A < B,

Aex, 0 < B = A,√
A2 −B2 sinh

(
x+ artanh B

A

)
, −A < B < A,

−Ae−x, B = −A < 0,

−
√
B2 −A2 cosh

(
x+ artanh A

B

)
, −B < −A < 0.

1. We have sechx = a tanhx+ b, and hence 1 = a sinhx+ b coshx. If b > a > 0, we have√
b2 − a2 cosh

(
x+ artanh

a

b

)
= 1.

Therefore,

cosh
(
x+ artanh

a

b

)
=

1√
b2 − a2

x+ artanh
a

b
= ± arcosh

1√
b2 − a2

x = ± arcosh
1√

b2 − a2
− artanh

a

b
,

as desired.
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2. When a > b > 0, √
a2 − b2 sinh

(
x+ artanh

b

a

)
= 1.

Therefore,

sinh

(
x+ artanh

b

a

)
=

1√
a2 − b2

x+ artanh
b

a
= arsinh

1√
a2 − b2

x = arsinh
1√

a2 − b2
− artanh

b

a
.

3. We would like to have two solutions to the equation 1 = a sinhx+ b coshx.

• 0 < a < b, this gives

x = ± arcosh
1√

b2 − a2
− artanh

a

b
,

For this to make sense, we must have 1√
b2−a2

≥ 1, and therefore 0 <
√
b2 − a2 ≤ 1, which is

0 < b2 − a2 ≤ 1.

For this to have two distinct points, we would like to have arcosh 1√
b2−a2

̸= 0 as well. This

means b2 − a2 ̸= 1.

Therefore, in this case, this means that a < b <
√
a2 + 1.

• b = a, this gives aex = 1, which gives a unique solution x = − ln a.

• −a < b < a, this gives √
A2 −B2 sinh

(
x+ artanh

B

A

)
= 1,

which can only give the solution x = arsinh 1√
A2−B2

− artanh B
A .

• b = −a, this gives −ae−x = 1, which does not have a solution.

• −b < −a < 0, this gives

−
√

b2 − a2 cosh
(
x+ artanh

a

b

)
= 1,

but this is impossible, since both square root and cosh are always positive.

Therefore, the only possibility is when a < b <
√
a2 + 1.

4. When they touch at a point, this will mean at this value, the number of solutions will change on
both sides. This is only possible when b =

√
a2 + 1.

Therefore,

x = − artanh
a√

a2 + 1
.

Hence,

y = a tanhx+ b

= −a · a√
a2 + 1

+
√
a2 + 1

=
−a2 + a2 + 1√

a2 + 1

=
1√

a2 + 1
.
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2016.3 Question 7

For ω = exp 2πi
n , we have for k = 0, 1, 2, . . . , n− 1, that ωk = exp 2πik

n . Therefore,

(ωk)n = exp
2πikn

n
= exp(2πik) = 1.

Also, notice that argωk = 2kπ
n , which means that all ωks are different.

This means that ω0 = 1, ω1 = 1, ω2, . . . , ωn−1 are exactly the n roots to the polynomial zn−1, which
has leading coefficient 1.

Therefore, we must have
(z − 1)(z − ω) · · · (z − ωn−1) = zn − 1,

as desired.
For the following parts, W.L.O.G. let the orientation of the polygon be such that Xk = ωk.

1. Let z represent the complex number for P , we have

n−1∏
k=0

|PXk| =
n−1∏
k=0

∣∣z − ωk
∣∣

=

∣∣∣∣∣
n−1∏
k=0

(z − ωk)

∣∣∣∣∣
= |zn − 1| .

Since P is equidistant from X0 and X1, we must have that P = r exp
(
πi
n

)
for some r ∈ R, where

|r| = |OP |. Therefore, we have

n−1∏
k=0

|PXk| = |zn − 1|

=

∣∣∣∣rn exp(πi

2

)
− 1

∣∣∣∣
= |−rn − 1|
= |rn + 1| .

If n is even, then rn = |r|n > 0, and therefore |rn + 1| = rn + 1 = |r|n + 1 = |OP |n + 1 as desired.

If n is odd, and r > 0, then rn = |r|n > 0, and

LHS = |rn + 1|
= rn + 1

= |r|n + 1

= |OP |n + 1.

When −1 ≤ r < 0, we have −1 ≤ rn = −|r|n < 0, and

LHS = |rn + 1|
= rn + 1

= −|r|n + 1

= − |OP |n + 1.

When r < −1, we have rn = −|r|n < −1, and

LHS = |rn + 1|
= −rn − 1

= |r|n − 1

= |OP |n − 1.
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In summary, when n is odd, we have

n−1∏
k=0

|PXk| =


|OP |n + 1, P is in the first quadrant,

− |OP |n + 1, P is in the third quadrant and |OP | ≤ 1,

|OP |n − 1, P is in the third quadrant and |OP | > 1.

2. Notice that for a general point P whose complex number is z, we have

n−1∏
k=1

|PXk| = (z − ω)(z − ω2) · · ·
(
z − ωn−1

)
=

zn − 1

z − 1

= 1 + z + z2 + · · ·+ zn−1.

If we let P = X0, z = 1, and RHS = n, just as we desired.
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2016.3 Question 8

1. If we replace x with −x in the original equation, we get

f(−x) + (1− (−x))f(−(−x)) = (−x)2,

which simplifies to
f(−x) + (1 + x)f(x) = x2

as desired.

Therefore, we have a pair of equations in terms of f(x) and f(−x):{
f(x) + (1− x)f(−x) = x2

(1 + x)f(x) + f(−x) = x2.

Multiplying the second equation by (1− x) gives us

(1− x2)f(x) + (1− x)f(−x) = x2(1− x),

and subtracting the first equation from this

−x2f(x) = −x3,

which gives f(x) = x.

Plugging this back, we have

LHS = f(x) + (1− x)f(−x)

= x+ (1− x)(−x)

= x− x+ x2

= x2

= RHS

which holds. Therefore, f(x) = x is the solution to the functional equation.

2. For x ̸= 1, we have

K(K(x)) =
x+1
x−1 + 1
x+1
x−1 − 1

=
(x+ 1) + (x− 1)

(x+ 1)− (x− 1)

=
2x

2
= x,

for x ̸= 1, as desired.

The equation on g is
g(x) + xg(K(x)) = x,

and if we substitute x as K(x), we have

g(K(x)) +K(x)g(K(K(x))) = K(x),

which simplifies to
g(K(x)) +K(x)g(x) = K(x).

Multiplying the second equation by x, we have

xK(x)g(X) + xg(K(x)) = xK(x),
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and subtracting the first equation from this gives

(xK(x)− 1)g(x) = x(K(x)− 1),

which gives

g(x) =
x (K(x)− 1)

xK(x)− 1

=
x
(

x+1
x−1 − 1

)
x · x+1

x−1 − 1

=
x [(x+ 1)− (x− 1)]

x(x+ 1)− (x− 1)

=
2x

x2 + 1
,

for x ̸= 1.

If we plug this back to the original equation, we have

LHS =
2x

x2 + 1
+ x

2 · x+1
x−1(

x+1
x−1

)2
+ 1

=
2x

x2 + 1
+

2x · (x+ 1) · (x− 1)

(x+ 1)2 + (x− 1)2

=
2x

x2 + 1
+

2x(x2 − 1)

2x2 + 2

=
2x

x2 + 1
+

x(x2 − 1)

x2 + 1

=
x3 − x+ 2x

x2 + 1

=
x(x2 + 1)

x2 + 1

= x

= RHS,

so

g(x) =
2x

x2 + 1

is the solution to the original functional equation.

3. Let H(x) = 1
1−x . Notice that

H(H(x)) =
1

1− 1
1−x

=
1− x

1− x− 1

=
x− 1

x

= 1− 1

x

and

H(H(H(x))) =
1

1−
(
1− 1

x

)
=

x

1
= x.
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Now, if we replace all the x with 1
1−x , we will get

h

(
1

1− x

)
+ h

(
1− 1

x

)
= 1− 1

1− x
−
(
1− 1

x

)
,

and doing the same replacement again gives us

h

(
1− 1

x

)
+ h(x) = 1−

(
1− 1

x

)
− x.

Summing these two equations, together with the original equation, gives us that

2 ·
[
h

(
1

1− x

)
+ h

(
1− 1

x

)
+ h(x)

]
= 3− 2 ·

[
x+

1

1− x
+

(
1− 1

x

)]
,

and therefore

h

(
1

1− x

)
+ h

(
1− 1

x

)
+ h(x) =

3

2
−
[
x+

1

1− x
+

(
1− 1

x

)]
.

Subtracting the second equation from this, gives that

h(x) =

(
3

2
−
[
x+

1

1− x
+

(
1− 1

x

)])
−
[
1− 1

1− x
−
(
1− 1

x

)]
=

1

2
− x.

Plugging this back to the original equation, we have

LHS =
1

2
− x+

1

2
− 1

1− x

= 1− x− 1

1− x

= RHS,

which satisfies the original functional equation. Therefore, the original equation solves to

h(x) =
1

2
− x.
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2016.3 Question 12

1. Let X ∼ B(100n, 0.2). We have µ = 100n · 0.2 = 20n, and σ2 = 100n · 0.2 · 0.8 = 16n.

We have that

α = P(16n ≤ X ≤ 24n)

= P(|(X − 20n)| ≤ 4n)

= P(|(X − µ)| ≤ σ
√
n)

= 1− P(|(X − µ)| > σ
√
n)

≥ 1− 1
√
n
2

= 1− 1

n
,

as desired, where we applied the Chebyshev Inequality for k =
√
n > 0.

2. Let X ∼ Po(n). Therefore, µ = E(X) = n, σ =
√

Var(X) =
√
n. To show the desired inequality

is equivalent to showing that

1 + n+ n2

2! + ·+ n2n

(2n!)

en
≥ 1− 1

n
.

Notice that the left-hand side is simply P(0 ≤ X ≤ 2n). By the Chebyshev Inequality, we have

LHS = P(0 ≤ X ≤ 2n)

= P(|X − µ| ≤ n)

= P(|X − µ| ≤
√
nσ)

= 1− P(|X − µ| >
√
nσ)

≥ 1− 1

n
= RHS,

as desired, where we applied the Chebyshev Inequality for k =
√
n > 0.
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2016.3 Question 13

For a random variable X with E(X) = µ and Var(X) = σ2, we have

κ(X) =
E
[
(X − µ)4

]
σ4

− 3

We have Y = X − a. Therefore, E(Y ) = µ− a and Var(Y ) = σ2.

κ(Y ) =
E
[
(Y − (µ− a))4

]
σ4

− 3

=
E
[
((X − a)− (µ− a))4

]
σ4

− 3

=
E
[
(X − µ)4

]
σ4

− 3

= κ(X),

as desired.

1. Let X ∼ N(0, σ2), µ = 0. Notice that

κ(X) =
E(X4)

σ4
− 3.

X has p.d.f.

fX(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)
.

Therefore,

E(X4) =
1

σ
√
2π

∫ +∞

−∞
x4 exp

(
− x2

2σ2

)
dx.

Now, consider using integration by parts. Notice that

d exp

(
− x2

2σ2

)
= − x

σ2
exp

(
− x2

2σ2

)
dx,

and therefore, using integration by parts, we have∫
x4 exp

(
− x2

2σ2

)
dx

= −σ2

∫
x3 d exp

(
− x2

2σ2

)
= −σ2

[
x3 exp

(
− x2

2σ2

)
−
∫

exp

(
− x2

2σ2

)
d(x3)

]
= 3σ2

∫
x2 exp

(
− x2

2σ2

)
dx− σ2x3 exp

(
− x2

2σ2

)
.

Therefore, considering the definite integral, we have

E(X4) =
1

σ
√
2π

∫ +∞

−∞
x4 exp

(
− x2

2σ2

)
dx

=
σ√
2π

[
3

∫ +∞

−∞
x2 exp

(
− x2

2σ2

)
dx−

[
x3 exp

(
− x2

2σ2

)]+∞

−∞

]
=

σ√
2π

[
3 · σ

√
2π · σ2 − 0

]
= 3σ4.
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Therefore,

κ(X) =
E(X4)

σ4
− 3 =

3σ4

σ4
− 3 = 0,

as desired.

An alternative solution exists using generating functions.

Recall that a general normal distribution N(µ, σ2) has MGF

M(t) = exp(µt+
σ2

2
t2),

and hence

MX(t) = exp

(
σ2

2
t2
)

= 1 +

(
σ2

2
t2
)
+

(
σ2

2 t2
)

2!
+ . . . .

Therefore,

E(X4) = M
(4)
X (0) =

(
σ2

2

)4

· 4! = 3σ4,

and the result follows.

2. Notice that

T 4

=
∑
a

(
4

4

)
Y 4
a +

∑
a<b

[(
4

1, 3

)
YaY

3
b +

(
4

2, 2

)
Y 2
a Y

2
b

]
+
∑

a<b<c

(
4

1, 1, 2

)
YaYbY

2
c +

∑
a<b<c<d

(
4

1, 1, 1, 1

)
YaYbYcYd

=
∑
a

Y 4
a +

∑
a<b

(4YaY
3
b + 6Y 2

a Y
2
b ) +

∑
a<b<c

12YaYbY
2
c +

∑
a<b<c<d

24YaYbYcYd,

where (
n

a1, a2, . . . , ak

)
=

n!

a1!a2! . . . ak!
,

k∑
i=1

ai = n

stands for the multinomial coefficient.

Note that E(Yr) = 0 for any r = 1, 2, . . . , n. Therefore,

E(YaY
3
b ) = E(Ya) E(Y

3
b ) = 0,

E(YaYbY
2
c ) = E(Ya) E(Yb) E(Y

2
c ) = 0,

E(YaYbYcYd) = E(Ya) E(Yb) E(Yc) E(Yd) = 0.

Therefore,

E(T 4) =
∑
a

E(Y 4
a ) +

∑
a<b

6E(Y 2
a Y

2
b )

=

n∑
r=1

E(Y 4
r ) + 6

n−1∑
r=1

n∑
s=r+1

E(Y 2
a ) E(Y

2
b ),

as desired.

3. Let Yi = Xi − µ for i = 1, 2, . . . , n, and µ = E(X), σ2 = Var(X) = Var(Y ) with E(Y ) = 0

Therefore, let T =
∑n

i Yi =
∑n

i Xi − nµ, we must have E(T ) = 0 and Var(T ) = nσ2.
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But since the kurtosis remains constant with shifts, we must have that κ(Yi) = κ, and

κ(T ) = κ

[
n∑
i

Xi

]
.

Hence, we have

κ

[
n∑
i

Xi

]
= κ(T )

=
E(T 4)

(nσ2)2
− 3

=

∑n
r=1 E(Y

4
r ) + 6

∑n−1
r=1

∑n
s=r+1 E(Y

2
a ) E(Y

2
b )

n2σ4
− 3

=
1

n2

n∑
r=1

E(Y 4
r )

σ4
+

6

n2

n−1∑
r=1

n∑
s=r+1

σ4

σ4
− 3

=
1

n2
n · (κ+ 3) +

6

n2

(
n

2

)
− 3

=
κ

n
+

3n+ 3n(n− 1)− 3n2

n2

=
κ

n
+ 0

=
κ

n
,

as desired.
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2017.3 Question 1

1. We have

RHS =
r + 1

r

(
1(

n+r−1
r

) − 1(
n+r
r

))

=
r + 1

r

(
r!(n− 1)!

(n+ r − 1)!
− r!n!

(n+ r)!

)
=

r + 1

r

(
r!(n− 1)!(n+ r)

(n+ r)!
− r!(n− 1)!n

(n+ r)!

)
=

r + 1

r
· r!(n− 1)!(n+ r)− r!(n− 1)!n

(n+ r)!

=
r + 1

r
· r!(n− 1)!r

(n+ r)!

=
(r + 1)!(n− 1)!

(n+ r)!

=

(
n+ r

r + 1

)
= LHS

as desired.

Therefore,

+∞∑
n=1

1(
n+r
r+1

) =

+∞∑
n=1

r + 1

r

(
1(

n+r−1
r

) − 1(
n+r
r

))

=
r + 1

r

+∞∑
n=1

(
1(

n+r−1
r

) − 1(
n+r
r

))

=
r + 1

r

[
+∞∑
n=0

1(
n+r
r

) − +∞∑
n=1

1(
n+r
r

)]

=
r + 1

r

1(
0+r
r

)
=

r + 1

r
,

assuming the sum converges.

When r = 2, we have
+∞∑
n=1

1(
n+2
3

) =
3

2
.

When n = 1, 1

(1+2
3 )

= 1
1 = 1.

Therefore,
+∞∑
n=2

1(
n+2
3

) =
1

2

as desired.

2. Notice that

3!

n3
<

1(
n+1
3

) ⇐⇒ 3!

n3
<

3!

(n+ 1)n(n− 1)

⇐⇒ n3 > (n+ 1)n(n− 1)

⇐⇒ n3 > n(n2 − 1)

⇐⇒ n3 > n3 − n

⇐⇒ n > 0,
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which is true.

Also, notice that

20(
n+1
3

) − 1(
n+2
5

) <
5!

n3
⇐⇒ 5!

(n+ 1)(n)(n− 1)
− 5!

(n+ 2)(n+ 1)(n)(n− 1)(n− 2)
<

5!

n3

⇐⇒ (n+ 2)(n− 2)− 1

(n+ 2)(n+ 1)(n)(n− 1)(n− 2)
<

1

n3

⇐⇒ (n2 − 5)n3 < (n2 − 4)(n2 − 1)n

⇐⇒ n5 − 5n3 < n5 − 5n3 + 4n

⇐⇒ 4n > 0,

which is true.

Therefore, we have that

+∞∑
n=3

3!

n3
<

+∞∑
n=3

1(
n+1
3

)
=

+∞∑
n=2

1(
n+2
3

)
=

1

2
,

and therefore
∑+∞

n=3
1
n3 < 1

12 , and
∑+∞

n=1
1
n3 < 1 + 1

8 + 1
12 = 29

24 = 116
96 .

On the other hand, we have

+∞∑
n=3

5!

n3
<

+∞∑
n=3

[
20(
n+1
3

) − 1(
n+2
5

)]

= 20

+∞∑
n=2

1(
n+2
3

) − +∞∑
n=1

1(
n+4
5

)
= 20 · 1

2
− 5

4

= 10− 5

4

=
35

4
,

and therefore
∑+∞

n=3
1
n3 > 7

96 , and
∑+∞

n=1
1
n3 > 1 + 1

8 + 7
96 = 115

96 .

Hence,

115

96
<

+∞∑
n=1

1

n3
<

116

96

as desired.
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2017.3 Question 2

1. Let the complex number representing R(P ) be z′. Therefore,

z′ − a = exp(iθ)(z − a),

z′ = z exp(iθ) + a(1− exp(iθ)),

as desired.

2. Let the complex number representing SR(P ) be z′′. Therefore,

z′′ − b = exp(iφ)(z′ − b),

z′′ = z′ exp(iφ) + b(1− exp(iφ)),

z′′ = [z exp(iθ) + a(1− exp(iθ))] exp(iφ) + b(1− exp(iφ)),

z′′ = z exp(i (θ + φ)) + a(1− exp(iθ)) exp(iφ) + b(1− exp(iφ)).

This will be an anti-clockwise rotation around c over an angle of (θ + φ), where

c [1− exp(i(θ + φ))] = a exp(iφ)− a exp(i (θ + φ)) + b− b exp(iφ),

If θ + φ = 2nπ for some integer n ∈ Z, 1− exp(i(θ + φ)) = 0, therefore c cannot be determined.

Multiplying both sides by exp
(
− i(θ+φ)

2

)
, we have

c

[
exp

(
− i(θ + φ)

2

)
− exp

(
i(θ + φ)

2

)]
= a

[
exp

(
i(φ− θ)

2

)
− exp

(
i(θ + φ)

2

)]
+ b

[
exp

(
− i(θ + φ)

2

)
− exp

(
i(φ− θ)

2

)]
,

and hence

−2ci sin

(
θ + φ

2

)
= −2ai exp

(
iφ

2

)
sin

(
θ

2

)
− 2bi exp

(
− iθ

2

)
sin
(φ
2

)
,

c sin

(
θ + φ

2

)
= a exp

(
iφ

2

)
sin

(
θ

2

)
+ b exp

(
− iθ

2

)
sin
(φ
2

)
.

If θ + φ = 2π, we will have z′′ = z + a exp(iφ) − a + b(1 − exp(iφ)) = z + (b − a)(1 − exp(iφ)),
which is a translation by (b− a)(1− exp(iφ)).

3. If RS = SR, then we have

a(1− exp(iθ)) exp(iφ) + b(1− exp(iφ)) = b(1− exp(iφ)) exp(iθ) + a(1− exp(iθ)),

a(−1 + exp(iφ) + exp(iθ)− exp(i(θ + φ))) = b(−1 + exp(iφ) + exp(iθ)− exp(i(θ + φ))),

(a− b)(1− exp(iφ))(1− exp(iθ)) = 0.

Therefore, a = b, or φ = 2nπ, or θ = 2nπ, for some integer n ∈ Z.
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2017.3 Question 3

By Vieta’s Theorem, from the quartic equation in x, we have

αβ + αγ + αδ + βγ + βδ + γδ = q,

and from the cubic equation in y, we have

(αβ + γδ) + (αγ + βδ) + (αδ + βγ) = −A.

Therefore, A = −q.

1. Since (p, q, r, s) = (0, 3,−6, 10), the cubic equation is reduced to

y3 − 3y2 − 10y + 84 = 0,

and therefore
(y − 2)(y − 7)(y + 6) = 0.

Therefore, y1 = 7, y2 = 2, y3 = −6, and αβ + γδ = 7.

2. We have

(α+ β)(γ + δ) = αγ + αδ + βγ + βδ

= (αβ + αγ + αδ + βγ + βδ + γδ)− (αβ + γδ)

= q − 7

= 3− 7

= −4.

By Vieta’s Theorem, we have αβγδ = s = 10. Therefore, αβ and γδ must be roots to the equation

x2 − 7x+ 10 = 0.

The two roots are x = 2 and x = 5, and therefore αβ = 5.

3. We have from the other root that γδ = 2.

We notice that (α+ β) + (γ + δ) = −p = 0. Therefore, from part 2, (α+ β) and (γ + δ) are roots
to the equation

x2 − 4 = 0.

This gives us α+ β = ±2 and γ + δ = ∓2.

Using the value of r and Vieta’s Theorem, we have

αβγ + αβδ + αγδ + βγδ = −r = 6.

Plugging in αβ = 5 and γδ = 2, we have

5(γ + δ) + 2(α+ β) = 6.

Therefore, it must be the case that α+ β = −2 and γ + δ = 2.

Hence, using the values of αβ and γδ, α and β are solutions to the quadratic equation x2+2x+5 = 0,
and γ and δ are solutions to the quadratic equation x2 − 2x+ 2 = 0.

Solving this gives us α, β = −1± 2i and γ, δ = 1± i. The solutions to the original quartic equation
is

x1,2 = −1± 2i, x3,4 = 1± i.
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2017.3 Question 4

1. Notice that a = eln a and hence ax = ex ln a, a
x

ln a = exwe have

F (y) = exp

(
1

y

∫ y

0

ln f(x) dx

)
= a

1
y ln a ·

∫ y
0

ln f(x) dx

= a
1
y ·

∫ y
0

ln f(x)
ln a dx

= a
1
y ·

∫ y
0

loga f(x) dx

as desired.

2. We have

H(y) = exp

(
1

y

∫ y

0

ln f(x)g(x) dx

)
= exp

[
1

y

∫ y

0

(ln f(x) + ln g(x)) dx

]
= exp

[
1

y

(∫ y

0

ln f(x) dx+

∫ y

0

ln g(x) dx

)]
= exp

(
1

y

∫ y

0

ln f(x) dx

)
· exp

(
1

y

∫ y

0

ln g(x) dx

)
= F (y) ·G(y).

3. Let f(x) = bx.

F (y) = exp

(
1

y

∫ y

0

ln f(x) dx

)
= b

1
y

∫ y
0

logb f(x) dx

= b
1
y

∫ y
0

logb bx dx

= b
1
y

∫ y
0

x dx

= b
1
y · y

2

2

= b
y
2

=
√
by.

4. Since F (y) =
√

f(y), we notice that f(y) = F (y)2 = exp
(

2
y

∫ y

0
ln f(x) dx

)
, and therefore ln f(y) =

2
y

∫ y

0
ln f(x) dx.

We substitute g(y) = ln f(y), and therefore

yg(y) = 2

∫ y

0

g(y) dx.

Therefore, differentiating both sides with respect to y gives us

yg′(y) + g(y) = 2g(y),

and therefore
−g(y) + yg′(y) = 0.

Multiplying y−2 on both sides gives us

−y−2g(y) + y−1g′(y) = 0,

and therefore
d

dy

g(y)

y
= 0,

Eason Shao Page 35 of 50



STEP Project Year 2017 Paper 3

and therefore
g(y)

y
= C =⇒ g(y) = Cy.

Therefore, we have

f(y) = exp g(y)

= exp(Cy)

= by

if we substitute b = exp(C) > 0, and therefore f(x) = by as desired.
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2017.3 Question 5

Since we have x = r cos θ and y = r sin θ, and r = f(θ), we have

dx

dθ
=

dr

dθ
· cos θ + r · d cos θ

dθ
= f ′(θ) cos θ − f(θ) sin θ,

and

dy

dθ
=

dr

dθ
· sin θ + r · d sin θ

dθ
= f ′(θ) sin θ + f(θ) cos θ,

Therefore,

dy

dx
=

dy
dθ
dx
dθ

=
f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ

=
f ′(θ) tan θ + f(θ)

f ′(θ)− f(θ) tan θ
.

For the two curves, we must have
dy

dx

∣∣∣∣
f

· dy

dx

∣∣∣∣
g

= −1

for them to meet at right angles. Therefore,

f ′(θ) tan θ + f(θ)

f ′(θ)− f(θ) tan θ
· g

′(θ) tan θ + g(θ)

g′(θ)− g(θ) tan θ
= −1

(f ′(θ) tan θ + f(θ)) · (g′(θ) tan θ + g(θ)) = − (f ′(θ)− f(θ) tan θ) · (g′(θ)− g(θ) tan θ)

f ′(θ)g′(θ)(1 + tan2 θ) + f(θ)g(θ)(1 + tan2 θ) = 0

f ′(θ)g′(θ) + f(θ)g(θ) = 0.

We have f
(
−π

2

)
= 4. Let

ga(θ) = a(1 + sin θ).

Therefore,
g′a(θ) = a cos θ,

and we have
f ′(θ)(a cos θ) + f(θ)a(1 + sin θ) = 0,

and therefore
df(θ)

dθ
cos θ = −f(θ)(1 + sin θ).

By separating variables we have

df(θ)

f(θ)
= −dθ(1 + sin θ)

cos θ
.

Notice that

−1 + sin θ

cos θ
= − (1− sin θ)(1 + sin θ)

(1− sin θ) cos θ
= − cos θ

1− sin θ
=

cos θ

sin θ − 1
,

integrating both sides gives us

ln f(θ) = ln |sin θ − 1|+ C = ln (1− sin θ) + C,

which gives
f(θ) = A(1− sin θ).

Since f
(
−π

2

)
= 4, we have 2A = 4 and A = 2, therefore f(θ) = 2(1− sin θ).
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x

y

r = 1 + sin θ

r = 4(1 + sin θ)

r = 2(1− sin θ)
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2017.3 Question 6

1. Consider the substitution u = 1
v .

When u → 0+, v → +∞.

When u = x, v = 1
x .

We also have

du = − 1

v2
dv.

Therefore,

T (x) =

∫ x

0

du

1 + u2

=

∫ 1
x

+∞
− 1

v2
· 1

1 + 1
v2

dv

=

∫ +∞

1
x

dv

1 + v2

=

∫ +∞

0

dv

1 + v2
−
∫ 1

x

0

dv

1 + v2

= T∞ − T (x−1),

as desired.

2. When u ̸= a−1, we have

dv

du
=

d

du

u+ a

1− au

=
1 · (1− au) + a · (u+ a)

(1− au)2

=
1− au+ au+ a2

(1− au)2

=
1 + a2

(1− au)2
.

Also, notice that

1 + v2

1 + u2
=

1 +
(

u+a
1−au

)2
1 + u2

=
(1− au)2 + (u+ a)2

(1 + u2)(1− au)2

=
1− 2au+ a2u2 + u2 + 2au+ a2

(1 + u2)(1− au)2

=
(1 + a2)(1 + u2)

(1− au)2(1 + u2)

=
1 + a2

(1− au)2
.

Therefore, dv
du = 1+v2

1+u2 as desired.
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Consider the substitution v = u+a
1−au . When u = 0, v = a. When u = x, v = x+a

1−ax . Therefore,

T (x) =

∫ x

0

du

1 + u2

=

∫ x+a
1−ax

a

1 + u2

1 + v2
· dv

1 + u2

=

∫ x+a
1−ax

a

dv

1 + v2

=

∫ x+a
1−ax

0

dv

1 + v2
−
∫ a

0

dv

1 + v2

= T

(
x+ a

1− ax

)
− T (a),

as desired.

If we substitute T (x) = T∞ − T (x−1) and T (a) = T∞ − T (a−1), we can see that

T (x) = T

(
x+ a

1− ax

)
− T (a)

T∞ − T (x−1) = T

(
x+ a

1− ax

)
−
[
T∞ − T (a−1)

]
T (x−1) = 2T∞ − T

(
x+ a

1− ax

)
− T (a−1),

as desired.

Now, let y = x−1 and b = a−1. Then

x+ a

1− ax
=

y−1 + b−1

1− b−1y−1

=
b+ y

by − 1
.

This gives us

T (y) = 2T∞ − T

(
b+ y

by − 1

)
− T (b),

as desired.

3. Let y = b =
√
3. We can easily verify that b > 0 and y > 1

b . Therefore,

T (
√
3) = 2T∞ − T

(√
3 +

√
3

3− 1

)
− T (

√
3),

which simplified, gives us T (
√
3) = 2

3T∞ as desired.

In T (x) = T
(

x+a
1−ax

)
− T (a), let x = a =

√
2− 1, we can verify that a > 0 and x < 1

a , therefore we

have

T (
√
2− 1) = T

(
(
√
2− 1) + (

√
2− 1)

1− (
√
2− 1) · (

√
2− 1)

)
− T (

√
2− 1),

T (
√
2− 1) = T

(
2
√
2− 2

1−
(
2 + 1− 2

√
2
))− T (

√
2− 1),

T (
√
2− 1) = T

(
2
√
2− 2

2
√
2− 2

)
− T (

√
2− 1),

2T (
√
2− 1) = T (1).
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In T (x) = T∞ − T (x−1), let x = 1. We have

T (1) = T∞ − T (1),

2T (1) = T∞.

Therefore, T (
√
2− 1) = 1

4T∞, as desired.
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2017.3 Question 7

x2

a2
+

y2

b2
=

(
1− t2

1 + t2

)2

+

(
2t

1 + t2

)2

=

(
1− t2

)2
+ (2t)

2

(1 + t2)
2

=
1− 2t2 + t4 + 4t2

(1 + t2)
2

=
1 + 2t2 + t4

(1 + t2)
2

=

(
1 + t2

)2
(1 + t2)

2

= 1

as desired, so T lies on the ellipse x2

a2 + y2

b2 = 1.

1. The gradient of L must satisfy that

dy

dx
=

dy/dt

dx/ dt

=
b

a
·

d
(
2t/(1 + t2)

)
/ dt

d ((1− t2)/(1 + t2)) / dt

=
b

a
· 2 · (1 + t2)− 2t · 2t
−2t · (1 + t2)− (1− t2) · 2t

=
b

a
· 2 + 2t2 − 4t2

−2t− 2t3 − 2t+ 2t3

=
b

a
· 1− t2

−2t
.

Therefore, we have a general point (X,Y ) ∈ L satisfy that

Y − 2bt

1 + t2
=

b

a
· 1− t2

−2t
·
(
X − a(1− t2)

1 + t2

)
(1 + t2)Y − 2bt =

b

a
· 1− t2

−2t
·
(
(1 + t2)X − a(1− t2)

)
(−2at)(1 + t2)Y − (−2at)(2bt) = b · (1− t2) ·

(
(1 + t2)X − a(1− t2)

)
(−2at)(1 + t2)Y = b(1− t2)(1 + t2)X − ab(1− t2)2 − 4abt2

(−2at)(1 + t2)Y = b(1− t2)(1 + t2)X − ab(1 + t2)2

−2atY = b(1− t2)X − ab(1 + t2)

ab(1 + t2)− 2atY − b(1− t2)X = 0

(a+X)bt2 − 2aY t+ b(a−X) = 0

as desired.

Now if we fix X,Y and solve for t, there are two solutions to this quadratic equation exactly when

(2aY )2 − 4(a+X)b · b(a−X) > 0

(aY )2 − (a+X)(a−X)b2 > 0

a2Y 2 > (a2 −X2)b2,

which corresponds to two distinct points on the ellipse.
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Since a2Y 2 > (a2 −X2)b2, we have Y 2

b2 > 1− X2

a2 by dividing through a2b2 on both sides, i.e.

X2

a2
+

Y 2

b2
> 1,

which means when the point (X,Y ) lies outside the ellipse.

This also holds when X2 = a2, i.e. when the point (X,Y ) lies on the pair of lines X = ±A. Here,
the condition is simply a2Y 2 > 0, which gives Y ̸= 0. One of the tangents will be the vertical line
X = ±A (whichever one the point lies on), and the other one as a non-vertical (as shown when
X = a, the tangents being L1 and L2).

x

y
x = a, L2x = −a

(X,Y )

L1

2. By Vieta’s Theorem, we have

pq =
b(a−X)

b(a+X)
=⇒ (a+X)pq = a−X,

as desired, and

p+ q = − −2aY

(a+X)b
=

2aY

(a+X)b
.

Let X = 0 for the equation in L,

abt2 − 2aY t+ ba = 0

bt2 − 2Y t+ b = 0

Y =
b(1 + t2)

2t
.

Therefore,

y1 + y2 =
b(1 + p2)

2p
+

b(1 + q2)

2q

=
b
[
(1 + p2)q + (1 + q2)p

]
2pq

= 2b,

therefore we have
4pq = (1 + p2)q + (1 + q2)p = (p+ q)(1 + pq).
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Therefore,

4 · a−X

a+X
=

2aY

(a+X)b
· 2a

a+X

a−X =
a2Y

b(a+X)

(a−X)(a+X)b = a2Y

(a2 −X2)b = a2Y

1− X2

a2
=

Y

b
X2

a2
+

Y

b
= 1,

as desired.
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2017.3 Question 8

We have

n∑
m=1

am(bm+1 − bm) =

n∑
m=1

ambm+1 −
n∑

m=1

ambm

= −
n−1∑
m=0

bm+1am+1 +

n∑
m=1

bm+1am

= −
n∑

m=1

bm+1am+1 +

n∑
m=1

bm+1am + an+1bn+1 − a1b1

= an+1bn+1 − a1b1 −
n∑

m=1

bm+1(am+1 − am),

as desired.

1. Let am = 1. On one hand, we have

n∑
m=1

am(bm+1 − bm) =

n∑
m=1

[sin(m+ 1)x− sinmx]

=

n∑
m=1

2 cos

(
(m+ 1)x+mx

2

)
sin

(
(m+ 1)x−mx

2

)

= 2

n∑
m=1

cos

(
m+

1

2

)
x sin

x

2

= 2 sin
x

2

n∑
m=1

cos

(
m+

1

2

)
x.

On the other hand, we have

n∑
m=1

am(bm+1 − bm) = an+1bn+1 − a1b1 −
n∑

m=1

bm+1(am+1 − am)

= sin(n+ 1)x− sinx.

Therefore, by rearranging, we have

n∑
m=1

cos

(
m+

1

2

)
x =

1

2
[sin(n+ 1)x− sinx] cosec

1

2
x

as desired.

2. Let am = m, and let bm = cos
(
m− 1

2

)
x. We have the identity

cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
.

Therefore, we have

n∑
m=1

am(bm+1 − bm) =

n∑
m=1

m ·
[
cos

(
m+

1

2

)
x− cos

(
m− 1

2

)
x

]

=

n∑
m=1

−2m sinmx sin
1

2
x

= −2 sin
1

2
x

n∑
m=1

m sinmx,
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and

n∑
m=1

am(bm+1 − bm)

= an+1bn+1 − a1b1 −
n∑

m=1

bm+1(am+1 − am)

= (n+ 1) cos

(
n+

1

2

)
x− 1 · cos 1

2
x−

n∑
m=1

cos

(
m+

1

2

)
x · 1

= (n+ 1) cos

(
n+

1

2

)
x− cos

1

2
x−

n∑
m=1

cos

(
m+

1

2

)
x

= (n+ 1) cos

(
n+

1

2

)
x− cos

1

2
x− 1

2
(sin(n+ 1)x− sinx) cosec

1

2
x

=
1

2
cosec

1

2
x

[
2(n+ 1) cos

(
n+

1

2

)
x sin

1

2
x− 2 cos

1

2
x sin

1

2
x− (sin(n+ 1)x− sinx)

]
=

1

2
cosec

1

2
x [(n+ 1) (sin(n+ 1)x− sinnx)− (sinx− sin 0)− (sin(n+ 1)x− sinx)]

=
1

2
cosec

1

2
x [n sin(n+ 1)x− (n+ 1) sinnx] .

Therefore, we have

−2 sin
1

2
x

n∑
m=1

m sinmx =
1

2
cosec

1

2
x [n sin(n+ 1)x− (n+ 1) sinnx]

n∑
m=1

m sinmx = −1

4
cosec2

1

2
x [n sin(n+ 1)x− (n+ 1) sinnx] ,

and therefore, p = − 1
4n, q = 1

4 (n+ 1).
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2017.3 Question 12

1. First, note that

1 =

x=n∑
x,y=1

P(X = x, Y = y)

=

n∑
x=1

n∑
y=1

k(x+ y)

=

n∑
x=1

n∑
y=1

(kx+ ky)

=

n∑
x=1

(
n · kx+ k

n∑
y=1

y

)

= nk

n∑
x=1

x+ nk

n∑
y=1

y

= n2(n+ 1)k

Therefore, k = 1
n2(n+1)

P(X = x) =

n∑
y=1

P(X = x, Y = y)

=

n∑
y=1

k(x+ y)

= nkx+ k

n∑
y=1

y

= nkx+
kn(n+ 1)

2

=
x

n(n+ 1)
+

1

2n

=
2x+ n+ 1

2n(n+ 1)
,

as desired.

By symmetry, P(Y = y) = 2y+n+1
2n(n+1) .

We have

P(X = x) · P(Y = y) =
(2x+ n+ 1)(2y + n+ 1)

4n2(n+ 1)2
.

But P(X = x, Y = y) = x+y
n2(n+1) is not equal to this. So X and Y are not independent.

2. By definition,
Cov(X,Y ) = E(XY )− E(X) E(Y ).
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We have

E(X) = E(Y ) =

n∑
t=1

t · P(X = t)

=

n∑
t=1

t · (2t+ n+ 1)

2n(n+ 1)

=
1

n(n+ 1)

n∑
t=1

t2 +
1

2n

n∑
t=1

t

=
n(n+ 1)(2n+ 1)

6n(n+ 1)
+

n(n+ 1)

4n

=
2n+ 1

6
+

n+ 1

4

=
4n+ 2 + 3n+ 3

12

=
7n+ 5

12
,

and

E(XY ) =

n∑
x,y=1

xy · P(X = x, Y = y)

=

n∑
x=1

n∑
y=1

xy(x+ y)

n2(n+ 1)

=
1

n2(n+ 1)

n∑
x=1

n∑
y=1

xy(x+ y)

=
1

n2(n+ 1)

n∑
x=1

n∑
y=1

(x2y + xy2)

=
1

n2(n+ 1)

[
n∑

x=1

x2
n∑

y=1

y +

n∑
x=1

x

n∑
y=1

y2

]

=
1

n2(n+ 1)
· 2 · n(n+ 1)(2n+ 1)

6
· n(n+ 1)

2

=
(2n+ 1)(n+ 1)

6
.

Therefore,

Cov(X,Y ) = E(XY )− E(X) E(Y )

=
(2n+ 1)(n+ 1)

6
− (7n+ 5)2

144

=
48n2 + 72n+ 24

144
− 49n2 + 70n+ 25

144

=
−n2 + 2n− 1

144

= − (n− 1)2

144
< 0,

as desired.
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2017.3 Question 13

We have

V (x) = E[(X − x)2]

= E(X2 − 2xX + x2)

= E(X2)− 2xE(X) + x2

= σ2 + µ2 − 2xµ+ x2.

Therefore, if Y = V (X), then

E(Y ) = E(V (X))

= E(σ2 + µ2 − 2Xµ+X2)

= σ2 + µ2 − 2µE(X) + E(X2)

= σ2 + µ2 − 2µ2 + µ2 + σ2

= 2σ2.

Let X ∼ U [0, 1], we have µ = E(X) = 1
2 , and σ2 = Var(X) = 1

12 . Therefore,

V (x) =
1

12
+

1

4
− x+ x2

= x2 − x+
1

3
.

The c.d.f. of X is F , defined as

P(X ≤ x) = F (x) =


0, x ≤ 0,

x, 0 < x ≤ 1,

1, 1 < x

Let the c.d.f. of Y be G, we have G(y) = P(Y ≤ y).
Since V ([0, 1]) =

[
1
12 ,

1
3

]
, we must have G(y) = 0 for y ≤ 1

12 and G(y) = 1 for y > 1
3 .

For y ∈
(

1
12 ,

1
3

]
, we have

G(y) = P(Y ≤ y) = P(V (X) ≤ y)

= P

((
x− 1

2

)2

+
1

12
≤ y

)

= P

(∣∣∣∣x− 1

2

∣∣∣∣ ≤
√

y − 1

12

)

= P

(
1

2
−
√
y − 1

12
≤ x ≤ 1

2
+

√
y − 1

12

)

= F

(
1

2
+

√
y − 1

12

)
− F

(
1

2
−
√
y − 1

12

)

=

(
1

2
+

√
y − 1

12

)
−

(
1

2
−
√
y − 1

12

)

= 2

√
y − 1

12
.

Therefore, the p.d.f. of y, g satisfies that for y ∈
(

1
12 ,

1
3

]
,

g(y) = G′(y) =
1√

y − 1
12

and 0 everywhere else.
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Hence, we have

E(Y ) =

∫
R
yf(y) dy

=

∫ 1
3

1
12

y√
y − 1

12

dy

=

∫ y= 1
3

y= 1
12

2y d

√
y − 1

12

=

[
2y

√
y − 1

12

] 1
3

1
12

− 2

∫ 1
3

1
12

√
y − 1

12
dy

=

[
2y

√
y − 1

12
− 4

3

(
y − 1

12

) 3
2

] 1
3

1
12

= 2 · 1
3
· 1
2
− 4

3
· 1
8

=
1

6
.

Also, 2σ2 = 2 · 1
12 = 1

6 = E(Y ), so the formula we derived holds in this case.
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