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2024.2 Question 1

1. In the n+ k integers, the first one is c, and the final one is c+ n+ k − 1.

In the n integers, the first one is c+ n+ k, and the final one is c+ 2n+ k − 1.

Hence, the sums are equal if and only if

(n+ k)[c+ (c+ n+ k − 1)]

2
=

n[(c+ n+ k) + (c+ 2n+ k − 1)]

2
(n+ k)(2c+ n+ k − 1) = n(2c+ 3n+ 2k − 1)

2cn+ n2 + nk − n+ 2ck + kn+ k2 − k = 2cn+ 3n2 + 2kn− 1

2ck + k2 = 2n2 + k,

as desired. All the above steps are reversible.

2. (a) When k = 1, 2c+ 1 = 2n2 + 1, and c = n2.

Hence,
(c, n) ∈

{
(t2, t) | t ∈ N

}
,

and n can take all positive integers.

(b) When k = 2, 4c+ 4 = 2n2 + 2, and 2c = n2 − 1.

By parity, n must be odd. Let n = 2t− 1 for t ∈ N, and we have

2c = (2t− 1)2 − 1 = 4t2 − 4t,

and hence
c = 2t2 − 2t.

Hence,
(c, n) ∈

{
(2t2 − 2t, 2t− 1) | t ∈ N

}
,

and n can take all odd positive integers.

3. If k = 4, we have 8c+ 16 = 2n2 + 4, and hence n2 = 4c+ 6.

By considering modulo 4, the only quadratic residues modulo 4 are 0 and 1, but the right-hand
side equation is congruent to 2 modulo 4.

Hence, there are no solutions for n and c.

4. When c = 1, we have 2n2 + k = 2k + k2, and hence 2n2 = k2 + k.

(a) When k = 1, k2 + k = 2, and so (n, k) = (1, 1) satisfies the equation.

When k = 8, k2 + k = 64 + 8 = 72, and so (n, k) = (6, 8) satisfies the equation.

(b) Given that 2N2 = K2 +K, notice that

(2N ′2)− (K ′2 +K ′) = 2(3N + 2K + 1)2 − (4N + 3K + 1)2 − (4N + 3K + 1)

= 2(9N2 + 4K2 + 1 + 12NK + 6N + 4K)

− (16N2 + 9K2 + 1 + 24NK + 8N + 6K)

− (4N + 3K + 1)

= 2N2 −K2 −K

= 2N2 − (K2 +K)

= 2N2 − 2N2

= 0,

and this means that
2N ′2 = K ′2 +K ′,

and hence
(N ′,K ′) = (3N + 2K + 1, 4N + 3K + 1)

is another pair of solution for (n, k).

(c) When (n, k) = (6, 8), 3n+2k+1 = 35, 4n+3k+1 = 49, and (n, k) = (35, 49) is also possible.

When (n, k) = (35, 49), 3n+ 2k + 1 = 204, 4n+ 3k + 1 = 288, and (n, k) = (204, 288) is also
possible.
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2024.2 Question 2

1. By Newton’s binomial theorem, we have

(8 + x3)−1 =
1

8

(
1 +

(x
2

)3)−1

=
1

8

∞∑
k=0

(−1)k
(x
2

)3k
,

and this is valid for ∣∣∣x
2

∣∣∣ < 1, |x| < 2,

as desired.

Hence, ∫ 1

0

xm

8 + x3
dx =

∫ 1

0

1

8

∞∑
k=0

(−1)k
(x
2

)3k
xm dx

=
1

8

∞∑
k=0

(−1)k

23k

∫ 1

0

x3k+m dx

=
∞∑
k=0

(−1)k

23(k+1)

[
x3k+m+1

3k +m+ 1

]1
0

=

∞∑
k=0

(
(−1)k

23(k+1)
· 1

3k +m+ 1

)
,

as desired.

2. Let m = 2, and we have ∫ 1

0

x2

8 + x3
dx =

∞∑
k=0

(
(−1)k

23(k+1)
· 1

3k + 3

)
.

Let m = 1, and we have ∫ 1

0

x

8 + x3
dx =

∞∑
k=0

(
(−1)k

23(k+1)
· 1

3k + 2

)
.

Let m = 0, and we have ∫ 1

0

x

8 + x3
dx =

∞∑
k=0

(
(−1)k

23(k+1)
· 1

3k + 1

)
.

Hence,

∞∑
k=0

(−1)k

23(k+1)

(
1

3k + 3
− 2

3k + 2
+

4

3k + 1

)
=

∫ 1

0

x2

8 + x3
dx− 2

∫ 1

0

x

8 + x3
dx+ 4

∫ 1

0

dx

8 + x3

=

∫ 1

0

x2 − 2x+ 4

8 + x3
dx

=

∫ 1

0

x2 − 2x+ 4

(x+ 2)(x2 − 2x+ 4)
dx

=

∫ 1

0

dx

x+ 2

= [ln|x+ 2|]10
= ln 3− ln 2.
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3. Using partial fractions, let A′ and B′ be real constants such that

72(2k + 1)

(3k + 1)(3k + 2)
=

A′

3k + 1
+

B′

3k + 2

=
3(A′ +B′)k + (2A′ +B′)

(3k + 1)(3k + 2)
.

Hence, we have {
3(A′ +B′) = 72 · 2 = 144,

2A′ +B′ = 72.

Therefore, (A′, B′) = (24, 24).

Let

A =

∫ 1

0

dx

8 + x3
, B =

∫ 1

0

xdx

8 + x3
, C =

∫ 1

0

x2 dx

8 + x3
,

and what is desired is 24(A+B).

From the previous part, we can see that 4A− 2B + C = ln 3− ln 2.

Also,

2A+B =

∫ 1

0

(2 + x) dx

8 + x3

=

∫ 1

0

dx

x2 − 2x+ 4

=

∫ 1

0

dx

(x− 1)2 + 3

=
1√
3

[
arctan

(
x− 1√

3

)]1
0

=
1√
3
·
[
arctan 0− arctan

(
− 1√

3

)]
=

1√
3
· π
6

=
π

6
√
3
.

We also have

C =

∫ 1

0

x2 dx

8 + x3

=
1

3

[
ln(8 + x3)

]1
0

=
1

3
[ln 9− ln 8]

=
2

3
ln 3− ln 2.

Hence, we have

4A− 2B = ln 3− ln 2− 2

3
ln 3 + ln 2 =

1

3
ln 3,

and hence 2A−B = 1
6 ln 3.

Therefore,

4A =
1

6
ln 3 +

π

6
√
3
,

and hence

A =
ln 3

24
+

π

24
√
3
.
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Subtracting two of this from 2A+B gives

B =
π

6
√
3
− ln 3

12
− π

12
√
3
=

π

12
√
3
− ln 3

12
,

and hence what is desired is

24(A+B) = 24

(
π

24
√
3
+

π

12
√
3
+

ln 3

24
− ln 3

12

)
= 24

(
π

8
√
3
− ln 3

24

)
= π

√
3− ln 3,

which gives a = 3, b = 3.
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2024.2 Question 3

1. The line NP has gradient

mNP =
sin θ − 0

cos θ − (−1)
=

sin θ

cos θ + 1
,

and hence it has equation

lNP : y =
sin θ

cos θ + 1
· (x+ 1).

When x = 0, we have

q =
sin θ

cos θ + 1

=
2 sin θ

2 cos
θ
2

2 cos2 θ
2 − 1 + 1

=
sin θ

2

cos θ
2

= tan
θ

2
.

2. (a)

RHS = tan
1

2

(
θ +

1

2
π

)
= tan

(
θ

2
+

π

4

)
=

tan θ
2 + tan π

4

1− tan θ
2 tan

π
4

=
q + 1

1− q

= f1(q),

as desired.

(b) Let the coordinates of P1 be (cosφ, sinφ), and hence we must have

f1(q) = tan
1

2
φ

tan
1

2

(
θ +

1

2
π

)
= tan

1

2
φ

φ = θ +
1

2
π,

and so P1 is the image of P being rotated through an angle of π counterclockwise about the
origin.

3. (a) The coordinates of P2 are
(
cos
(
θ + 1

3π
)
, sin

(
θ + 1

3π
))
, and hence we must have that

f3(q) = tan
1

2

(
θ +

1

3
π

)
= tan

(
θ

2
+

π

6

)
=

tan θ
2 + tan π

6

1− tan θ
2 tan

π
6

=
q + 1√

3

1− q · 1√
3

=
1 +

√
3q√

3− q
.
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(b) Notice that f3(q) = f1(−q) = tan 1
2

(
−θ + 1

2π
)
, and so the coordinates of P3 must be(

cos

(
1

2
π − θ

)
, sin

(
1

2
π − θ

))
,

which is P3(sin θ, cos θ), a reflection of P in the line y = x.

(c) P4 must be the image of P under the following transformations:

• Rotation counterclockwise by 1
3π about the origin O;

• Reflection in the line y = x;

• Rotation clockwise by 1
3π about the origin O.

This is precisely the reflection in which the axis after the second step is y = x. Hence, the
axis of this reflection has an angle of 1

4π − 1
3π = 1

12π with the positive x-axis.

P4 is the image of P reflected in the line which makes an angle of − π
12 with the positive x-axis,

passing through the origin.
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2024.2 Question 4

1. (a) We first show that b lies in the plane XOY . Since b is a linear combination of x and y, it

must lie in the plane containing x =
−−→
OX and y =

−−→
OY , which is the plane XOY .

Let α be the angle between b and x, and let β be the angle between b and y, where 0 ≤
α, β ≤ π.

We have

cosα =
b · x
|b||x|

=
1

|b|
· (|x|y + |y|x) · x

|x|

=
1

|b|
· |x| · (x · y) + |y| · |x|2

|x|

=
1

|b|
· (x · y + |x| · |y|) .

Similarly,

cosβ =
1

|b|
· (x · y + |x| · |y|) = cosα.

Since the cos function is one-to-one on [0, π], we must have α = β.

Since x·y = |x|·|y|·cos θ where θ is the angle between x and y, we have x·y ≥ −|x||y|, and since
θ ̸= π (since OXY are non-collinear), we have x · y > −|x||y|, and hence cosα = cosβ > 0.

This shows that both angles are less than π
2 = 90◦.

Hence, the three conditions

• b lies in the plane OXY ,

• the angle between b and x is equal to the angle between b and y,

• both angles are less than π
2 = 90◦

are all satisfied, and we can conclude that b is a bisecting vector for the plane OXY .

X

Y

x

y

b

All bisecting vectors must lie on the line containing b (the dashed line on the diagram), and
hence a scalar multiple of b.

Furthermore, since both angles must be less than π
2 , it must not on the opposite as where b

is situated, and hence it must be a positive multiple of b.

(b) If B lies on XY , then OB = µx + (1 − µ)y must be a convex combination of x and y, and
hence

λ (|x|y + |y|x) = µx+ (1− µ)y.
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Since O, X and Y are not collinear, we must have x and y are linearly independent, and
hence λ|y| = µ and λ|x| = 1− µ, hence giving

λ =
1

|x|+ |y|

We therefore have

XB

BY
=

∣∣∣−−→OB − x
∣∣∣∣∣∣y −

−−→
OB

∣∣∣
=

∣∣∣ |x|
|x|+|y|y + |y|

|x|+|y|yx− x
∣∣∣∣∣∣ |x|

|x|+|y|y + |y|
|x|+|y|yx− y

∣∣∣
=

∣∣∣ |x|
|x|+|y| (y − x)

∣∣∣∣∣∣ |y|
|x|+|y| (x− y)

∣∣∣
=

|x|
|x|+|y| · |y − x|

|y|
|x|+|y| · |x− y|

=
|x|
|y|

,

which means
XB : BY = |x| : |y|,

which is precisely the angle bisector theorem.

(c) Considering the dot product,

−−→
OB ·

−−→
XY = λb · (y − x)

= λ (|x|y + |y|x) · (y − x)

= λ [|x| · y · y + |y| · x · y − |x| · x · y − |y| · x · x]

= λ
[
|x| · |y|2 + [|y| − |x|]x · y − |y| · |x|2

]
= λ (|y| − |x|) (|x||y|+ x · y)
= 0.

Since O,X, Y are not collinear, x · y > −|x||y|, and hence |x||y|+ x · y > 0.

Also, λ = 1
|x|+|y| ̸= 0.

So it must be the case that |x| − |y| = 0, which means |x| = |y|.
Hence, OX = OY , and triangle OXY is isosceles.

2. Let u, v and w be the bisecting vectors for QOR, ROP and POQ respectively, and let p =
−−→
OP ,

q =
−−→
OQ, r =

−−→
OR.

Let i, j, k be some arbitrary positive real constant.

From the question, we have 
u = i (|q|r+ |r|q) ,
v = j (|r|p+ |p|r) ,
w = k (|p|q+ |q|p) .

Considering a pair of dot-product, we have

u · v = ij · (|q||r|r · p+ |p||q|r · r+ |r||r|p · q+ |r||p|q · r)
= ij|r| (|q|r · q+ |p|r · q+ |p||q||r|+ |r|p · q)

= ij|r|2|p||q| (cos⟨p, r⟩+ cos⟨r,q⟩+ cos⟨p,q⟩+ 1) ,
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where ⟨a,b⟩ denotes the angle between a and b, in [0, π].

Denote
t = cos⟨p, r⟩+ cos⟨r,q⟩+ cos⟨q,p⟩+ 1,

and hence 
u · v = ij|r|2|p||q|t,

u ·w = ik|r||p||q|2t,

v ·w = jk|r||p|2|q|t.

Since i, j, k > 0, and |p|, |q|, |r| > 0 since none of P,Q,R are at O, we must have

sgn(u · v) = sgn(u ·w) = sgn(v ·w) = sgn t,

where sgn : R → {−1, 0,−1} is the sign function defined as

sgnx =


1, x > 0,

0, x = 0,

−1, x < 0.

But the sign of a dot product also corresponds to the angle between two non-collinear non-zero
vectors, since this resembles the sign of the cosine of the angle between them:

sgna · b = sgn|a||b| cos⟨a,b⟩
= sgn cos⟨a,b⟩

=


1, ⟨a, b⟩ is acute,
0, ⟨a, b⟩ is right-angle,
−1, ⟨a, b⟩ is obtuse.

This means the angles between u and v, u and w, v and w must all be acute, obtuse, or right
angles. This is exactly what is desired, and finishes our proof.
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2024.2 Question 5

1. We have
f1(n) = n2 + 6n+ 11 = (n+ 3)2,

and so
f1(Z) = {(n+ 3)2 + 2 | n ∈ Z}.

But since if n ∈ Z, n+ 3 ∈ Z, and if n+ 3 ∈ Z, n ∈ Z, so

f1(Z) = {(n+ 3)2 + 2 | n ∈ Z} = {n2 + 2 | n ∈ Z}.

We have F1(Z) = {n2 + 2 | n ∈ Z}, and so f1(Z) = F1(Z), which shows f1 and F1 has the same
range/

2. We have
g1(n) = n2 − 2n+ 5 = (n− 1)2 + 4,

and so
g1(Z) = {(n− 1)2 + 4 | n ∈ Z} = {n2 + 4 | n ∈ Z}.

The quadratic residues modulo 4 are 0 and 1, and so

f1(Z) ⊆ {0 + 2, 1 + 2} = {2, 3}mod4,

and
g1(Z) ⊆ {0 + 4, 1 + 4} = {0, 1}mod4.

Under modulo 4, f1(Z) ∩ g1(Z) ⊆ {2, 3} ∩ {0, 1} = ∅.

Hence, f1(Z) ∩ g1(Z) = ∅ under modulo 4, and hence f1(Z) ∩ g1(Z) = ∅.

3. We have
f2(n) = n2 − 2n− 6 = (n− 1)2 − 7,

and so
f2(Z) = {(n− 1)2 − 7 | n ∈ Z} = {n2 − 7 | n ∈ Z}.

Similarly,
g2(n) = n2 − 4n+ 2 = (n− 2)2 − 2,

and so
g2(Z) = {(n− 2)2 − 2 | n ∈ Z} = {n2 − 2 | n ∈ Z}.

So for the intersection, if t ∈ f2(Z) ∩ g2(Z), then there exists n1, n2 ∈ Z,

t = n2
1 − 7 = n2

2 − 2,

and hence
n2
1 − n2

2 = (n1 + n2)(n1 − n2) = 5.

So
(n1 + n2, n1 − n2) = (±1,±5) or (±5,±1),

and hence
(n1, n2) = (±3,∓2) or (±3,±2),

which gives
t = (±3)2 − 7 = 2.

Therefore,
f2(Z) ∩ g2(Z) = {2},

and 2 is the only integer which lies in the intersection of the range of f2 and g2.
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4. Since p, q ∈ R, we must have p+ q, p− q ∈ R and hence

(p+ q)2 = p2 + 2pq + q2 ≥ 0,

(p− q)2 = p2 − 2pq + q2 ≥ 0.

Hence,

3

4
(p+ q)2 +

1

4
(p− q)2 =

3

4

(
p2 + 2pq + q2

)
+

1

4

(
p2 − 2pq + q2

)
= p2 + pq + q2

≥ 0,

as desired.

We have
f3(n) = n3 − 3n2 + 7n = (n− 1)3 + 4n+ 1 = (n− 1)3 + 4(n− 1) + 5,

and so
f3(Z) = {(n− 1)3 + 4(n− 1) + 5 | n ∈ Z} = {n3 + 4n+ 5 | n ∈ Z}.

We have
g3(Z) = {n3 + 4n− 6 | n ∈ Z}.

So if t ∈ f3(Z) ∩ g3(Z), then there exists n1, n2 ∈ Z such that

t = n3
1 + 4n1 + 5 = n3

2 + 4n2 − 6.

Hence,
(n3

1 − n3
2) + 4(n1 − n2) = (n1 − n2)(n

2
1 + n1n2 + n2

2 + 4) = −11.

Since n2
1 + n1n2 + n2

2 ≥ 0 by the lemma in the previous part, we have n2
1 + n1n2 + n2

2 + 4 ≥ 4.

But n2
1 + n1n2 + n2

2 + 4 | −11, and so

n2
1 + n1n2 + n2

2 + 4 = 11, n1 − n2 = −1.

Putting n2 = n1 + 1 into the first equation, we have

n2
1 + n1n2 + n2

2 + 4 = n2
1 + n1(n1 + 1) + (n1 + 1)2 + 4

= n2
1 + n2

1 + n1 + n2
1 + 2n1 + 1 + 4

= 3n2
1 + 3n1 + 5

= 11,

and hence
3n2

1 + 3n1 − 6 = 3(n1 + 2)(n1 − 1) = 0,

which gives n1 = −2 or n1 = 1, and they correspond to n2 = −1 or n2 = 2.

Hence,
t = (−1)3 + 4(−1)− 6 = −1− 4− 6 = −11,

or
t = 23 + 4 · 2− 6 = 8 + 8− 6 = 10.

Hence,
f3(Z) ∩ g3(Z) = {−11, 10},

and the integers that lie in the intersection of the ranges are −11 and 10.
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2024.2 Question 6

1. We first look at the base case where n = 0, and we have

RHS =
1

22·0

(
2 · 0
0

)
=

1

20

(
0

0

)
= 1,

and LHS = T0 = 1. So the desired statement is satisfied for the base case where n = 0.

Assume the original statement is true for some n = k ≥ 0, that

Tn =
1

22n

(
2n

n

)
.

Consider n = k + 1, we have

Tn = Tk+1

=
2(k + 1)− 1

2(k + 1)
Tk

=
2k + 1

2(k + 1)
· 1

22k

(
2k

k

)
=

(2k + 1)(2k + 2)

2(k + 1)2(k + 1)
· 1

22k
(2k)!

(
k!k!)

=
(2k + 2)!

(k + 1)!(k + 1)!
· 1

22k+2

=
1

22(k+1)

(
2(k + 1)

k + 1

)
,

which is precisely the statement for n = k + 1.

The original statement is true for n = 0, and given it holds for some n = k ≥ 0, it holds for
n = k + 1. Hence, by the principle of mathematical induction, the statement

Tn =
1

22n

(
2n

n

)
holds for all integers n ≥ 0, as desired.

2. By Newton’s binomial theorem, we have

(1− x)−
1
2 = 1 +

(
−1

2

)
(−x) +

(
− 1

2

) (
− 3

2

)
2!

(−x)2 +

(
− 1

2

) (
− 3

2

) (
− 5

2

)
3!

(−x)3 + · · · ,

and notice that the negative signs cancels out, and hence

an =

∏n
k=1

2k−1
2

n!
=

∏n
k=1(2k − 1)

2nn!
.

Hence, we note that

ar
ar−1

=

∏r
k=1(2k − 1)/(2rr!)∏r−1

k=1(2k − 1)/(2r−1(r − 1)!)

=
2r − 1

2r
,

and hence

ar =
2r − 1

2r
ar−1.

Note that a0 = 1 as well. The sequence {an}∞0 and {Tn}∞0 have the same initial term a0 = T0 = 1,
and they have the same same inductive relationship

an =
2n− 1

2n
an−1, Tn =

2n− 1

2n
Tn−1.
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This shows they are the same sequence, hence

an = Tn

for all n = 0, 1, 2, · · ·.

3. By Newton’w binomial theorem,

(1− x)−
3
2 = 1 +

(
− 3

2

)
(−x)

1!
+

(
− 3

2

) (
− 5

2

)
(−x)

2!
+ · · · ,

and so

bn =

∏n
k=1

2k+1
2

n!
=

∏n
k=1(2k + 1)

2nn!
.

Notice that

bn
an

=

∏n
k=1(2k + 1)/(2nn!)∏n
k=1(2k − 1)/2nn!

=

∏n
k=1(2k + 1)∏n
k=1(2k − 1)

=

∏n+1
k=2(2k − 1)∏n
k=1(2k − 1)

=
2(n+ 1)− 1

2 · 1− 1

= 2n+ 1,

and so

bn = (2n+ 1)an

= (2n+ 1) · 1

22n
·
(
2n

n

)
=

2n+ 1

22n

(
2n

n

)
.

4. By the binomial expansion, we have

(1− x)−1 = 1 + x+ x2 + x3 + · · · ,

and we have
(1− x)−

1
2 · (1− x)−1 = (1− x)−

3
2 .

For a particular term in the series expansion for (1− x)−
3
2 , say bn, we must have

bnx
n =

n∑
t=0

at · xt · 1 · xn−t,

and hence

bn =

n∑
t=0

at,

which gives

2n+ 1

22n

(
2n

n

)
=

n∑
r=0

1

22r

(
2r

r

)
,

exactly as desired.

Eason Shao Page 391 of 430



STEP Project Year 2024 Paper 2

2024.2 Question 7

1. In this case, we have either y2 + (x − 1)2 = 1 (giving a circle with radius 1 centred at (1, 0)), or
y2 + (x+ 1)2 = 1 (giving a circle with radius 1 centred at (−1, 0)).

x

y

(−1, 1) (1, 1)

(−1,−1) (1,−1)

−2 −1 O 1 2

2. At y = k, we have

[(x− 1)2 + (k2 − 1)][(x+ 1)2 + (k2 − 1)] =
1

16

(x− 1)2(x+ 1)2 + (k2 − 1)[(x− 1)2 + (x+ 1)2] + (k2 − 1)2 − 1

16
= 0

(x2 − 1)2 + 2(k2 − 1)(x2 + 1) + (k4 − 2k2 + 1)− 1

16
= 0

x4 − 2x2 + 1 + 2(k2 − 1)x2 + 2(k2 − 1) + (k4 − 2k2 + 1)− 1

16
= 0

x4 + 2(k2 − 2)x2 + k4 − 1

16
= 0,

as desired.

By completing the square, we have

(x2 + (k2 − 2))2 + k4 − 1

16
− (k2 − 2)2 = 0

(x2 + (k2 − 2))2 =
65

16
− 4k2.

• If 4k2 > 65
16 , i.e. k

2 > 65
64 , the right-hand side is negative, so there will be no intersections.

• If 4k2 = 65
16 , i.e. k

2 = 65
64 , we have

x2 + (k2 − 2) = 0,

and hence

x2 = 2− k2 = 2− 65

64
=

63

64
,

giving

x = ±3
√
7

8
.

There will be two intersections.

• If 4k2 < 65
16 , i.e. k

2 < 65
64 , we have

x2 + (k2 − 2) = ±
√

65

16
− 4k2,
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and hence

x2 = 2− k2 ±
√

65

16
− 4k2.

The case where

x2 = 2− k2 +

√
65

16
− 4k2

> 2− k2

> 2− 65

64

=
63

64
> 0

always gives two solutions for x.

– If 2− k2 −
√

65
16 − 4k2 < 0,

2− k2 −
√

65

16
− 4k2 < 0√

65

16
− 4k2 > 2− k2

65

16
− 4k2 > k4 − 4k2 + 4

k4 <
1

16

k2 <
1

4
,

there are no solutions for the case where the minus sign is taken.

– If 2− k2 −
√

65
16 − 4k2 = 0, k2 = 1

4 , the minus sign produce precisely one solution x = 0,

giving 3 intersections in total.

– If 2 − k2 −
√

65
16 − 4k2 < 0, k2 > 1

4 , the minus sign will produce two additional roots,

hence giving 4 intersections in total.

To summarise, the number of intersections with the line y = k for each positive value of k is

number of intersections =



0, k2 > 65
64 , k >

√
65
8 ,

2, k2 = 65
64 , k =

√
65
8 ,

4, 1
4 < k2 < 65

64 ,
1
2 < k <

√
65
8 ,

3, k2 = 1
4 , k = 1

2 ,

2, k2 < 1
4 , 0 < k < 1

2 .

3. When the point on C2 has the greatest possible y-coordinate, the two points have x-coordinates

x = ±3
√
7

8
,

and on C1 has
x = ±1.

Since 3
√
7 =

√
63 <

√
64 = 8, we must have 3

√
7

8 < 1, meaning those on C2 are closer to the y-axis
than those on C1.

4. If both are negative, then the distance from (x, y) to (1, 0) and (−1, 0) are both less than 1. But
this is not possible, since the distance from (1, 0) to (−1, 0) is 2, which means the sum of the
distances from (x, y) to those points has to be at least 2.
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Therefore, since the product of those two terms are positive for C2, and they cannot be both
negative, they must both be positive, and hence the distance from (x, y) to (1, 0) and (−1, 0) are
both more than 1, meaning all points on C2 lies outside the two circles that make up C1, which
shows that C2 lies entirely outside C1.

5. C2 is symmetric about both the x-axis and the y-axis.

When x = 0, y4 = 1
16 , and hence y = ± 1

2 .

When y = 0, x2 = 2 +
√
65
16 , and hence x = ±

√
2 +

√
65
4 = ± 1

2

√
8 +

√
65.

Hence, the graph looks as follows.

x

y

1
2

√
8 +

√
65− 1

2

√
8 +

√
65

1
2

− 1
2

(
3
√
7

8 ,
√
65
7

)

(
3
√
7

8 ,−
√
65
7

)

(
− 3

√
7

8 ,
√
65
7

)

(
− 3

√
7

8 ,−
√
65
7

)
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2024.2 Question 8

1. Notice that by expanding this square,

(
√
xn −√

yn)
2
= xn + yn − 2

√
xnyn

= 2a(xn, yn)− 2g(xn, yn)

= 2(xn+1 − yn+1).

Since this is a square, it must be non-negative, with the equal sign taking if and only if
√
xn =

√
yn,

which holds if and only if xn = yn.

So xn+1 ≥ yn+1, and xn+1 = yn+1 if and only if xn = yn.

Since y0 < x0, we have y0 ̸= x0, and hence y1 ̸= x1. By induction, this shows that yn ̸=n for all n,
and hence for all n ≥ 0, yn < xn.

Furthermore,

xn − xn+1 = xn − a(xn, yn)

= xn − xn + yn
2

=
xn − yn

2
> 0,

since xn > yn and hence xn > xn+1.

Similarly,

yn+1 − yn = g(xn, yn)− yN

=
√
xnyn − yN

=
√
yn(

√
xn −√

yn)

> 0,

since xn > yn implies
√
xn >

√
yn, and hence yn < yn+1.

Hence, for all n ∈ N,
yn < xn < xn−1 < xn−2 < · · · < x0,

and yn+1 > yn.

Hence, {yN}∞n=0 is an increasing sequence, and is bounded above by x0.

So there exists M ∈ R such that
lim
n→∞

yn = M.

As for the inequality, the left inequality sign is equivalent to yn+1 < xn+1 which was shown above.

To show the right inequality sign, this is equivalent to showing

1

2
(
√
xn −√

yn)
2 <

1

2
(xn − yn)

xn + yn − 2
√
xnyN < xn − yn

2yn < 2
√
xnyn√

yn <
√
xn,

which is true since yn < xn.

Hence,

0 < xn+1 − yn+1 <
1

2
(xn − yn)

as desired.
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Hence, we have

0 < xn − yn

<
1

2
(xn−1 − yn−1)

<
1

4
(xn−2 − yn−2)

< · · ·

<
1

2n
(x0 − y0),

by induction.

x0 − y0 > 0 is a positive real constant. Let n → ∞, and by the squeeze theorem, the strict
inequalities become weak, and

0 ≤ lim
n→∞

(xn − yn) ≤ lim
n→∞

(
1

2n
(x0 − y0)

)
= 0,

and hence
lim

n→∞
(xn − yn) = 0.

Therefore,

lim
n→∞

xn = lim
n→∞

[(xn − yn) + yn]

= lim
n→∞

(xn − yn) + lim
n→∞

yn

= 0 +M

= M,

since both parts of the limit xn − yn and yn exist, the limit of the sum is the sum of the limits of
the individual parts.

2. Using this substitution, when x → 0+, we have t → −∞, and when x → +∞, t → +∞. Also,

dt

dx
=

1

2
+

1

2
· pq
x2

=
1

2

(
1 +

pq

x2

)
.

Hence, the integral can be simplified as∫ ∞

−∞

dt√(
1
4 (p+ q)2 + t2

)
(pq + t2)

=

∫ ∞

0

1
2

(
1 + pq

x2

)
dx√(

1
4 (p+ q)2 + 1

4

(
x− pq

x

)2)(
pq + 1

4

(
x− pq

x

)2)
=

∫ ∞

0

1
2

(
1 + pq

x2

)
dx

1
4

√(
p2 + 2pq + q2 + x2 − 2pq + p2q2

x2

)(
4pq + x2 − 2pq + p2q2

x2

)
= 2

∫ ∞

0

(
1 + pq

x2

)
dx√(

p2 + q2 + x2 + p2q2

x2

)(
x2 + 2pq + p2q2

x2

)
= 2

∫ ∞

0

(x2 + pq) dx√
(x4 + (p2 + q2)x2 + p2q2) (x4 + 2pqx2 + p2q2)

= 2

∫ ∞

0

(x2 + pq) dx√
(x2 + p2)(x2 + q2)(x2 + pq)2

= 2

∫ ∞

0

dx√
(x2 + p2)(x2 + q2)

= 2I(p, q),
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which means ∫ ∞

−∞

dt√(
1
4 (p+ q)2 + t2

)
(pq + t2)

= 2I(p, q).

But also note that the left-hand side satisfies that

LHS =

∫ ∞

−∞

dt√(
1
4 (p+ q)2 + t2

)
(pq + t2)

= 2

∫ ∞

0

dt√[(
1
2 (p+ q)

)2
+ t2

] [
(
√
pq)2 + t2

]
= 2

∫ ∞

0

dt√
[a(p, q)2 + t2] [g(p, q)2 + t2]

= 2I(a(p, q), g(p, q)),

since the integrand is an even function, and so

I(p, q) = I(a(p, q), g(p, q)),

as desired.

Since 0 < q < p, let y0 = q, x0 = p, and hence

I(p, q) = I(x0, y0)

= I(a(x0, y0), g(x0, y0))

= I(x1, y1)

= · · ·
= I(xn, yn).

Let n → ∞, and we have

I(p, q) = I(M,M)

=

∫ ∞

0

dx

M2 + x2

=
1

M

[
arctan

( x

M

)]∞
0

=
π

2M
.
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2024.2 Question 11

1. Notice that

x
1
x = exp

(
lnx

x

)
.

As x → 0+, ln x
x → −∞, and hence x

1
x → 0+.

As x → ∞, ln x
x → 0+, and hence x

1
x → 1.

We have

dy

dx
=

d

dx
exp

(
lnx

x

)
= x

1
x · d

dx

lnx

x

= x
1
x ·

1
x · x− lnx · 1

x2

= x
1
x · 1− lnx

x2
.

This shows that dy
dx < 0 when x > e, = 0 when x = e, and > 0 when x < e.

This means that the point
(
e, e

1
e

)
is a maximum for the graph.

Hence, the graph looks as follows.

x

y

O

(
e, e

1
e

)
y = 1

The maximum of n
1
n must occur for n ∈ N when n = 2 or n = 3, since 2 < e < 3.

Notice that

2
1
2 < 3

1
3 ⇐⇒ 23 < 32

⇐⇒ 8 < 9,

which is true, so the maximum of n
1
n occurs when n = 3.

2. Let Xi be the number of tests for each group, and let X be the total number of tests, we have

X =

r∑
i=1

Xi.

For each Xi, we have if the enzyme is not present in any of the persons, then there is only one test
needed. Otherwise, if the enzyme is present in any of the persons, then an additional k tests are
needed. Hence,

E(Xi) = (1− p)k + (1− (1− p)k)(1 + k) = 1 + (1− pk)k,
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and the expected total number of tests is given as

E(X) = E

(
r∑

i=1

Xi

)

=

r∑
i=1

E (Xi)

=

r∑
i=1

[
1 + (1− (1− p)k)k

]
= r

[
1 + (1− (1− p)k)k

]
=

N

k

[
1 + (1− (1− p)k)k

]
= N

(
1

k
+ 1− (1− p)k

)
.

3. The expected number of tests is at most N is the equation

N

(
1

k
+ 1− (1− p)k

)
≤ N

1

k
+ 1− (1− p)k ≤ 1

1

k
≤ (1− p)k(

1

k

) 1
k

≤ 1− p

1

1− p
≤ k

1
k .

The maximum of k
1
k arises where k = 3, and this is valid since k = 3 | N . Hence,

1

1− p
≤ 3

1
3

p ≤ 1− 3−
1
3 ,

and hence such largest value of p is
p = 1− 3−

1
3 .

Notice that

1− 3−
1
3 >

1

4
⇐⇒ 3

4
> 3−

1
3

⇐⇒
(
3

4

)3

> 3−1

⇐⇒ 27

64
>

1

3
⇐⇒ 81 > 64,

which is true, and so this value of p is greater than 1
4 .

4. We would like to show that if pk ≪ 1, then 1− (1− p)k ≈ pk.

Notice that

1− (1− p)k = 1−
k∑

i=0

(
k

i

)
(−p)k

= 1− (1− kp+ · · · )
≈ kp,
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and hence

E(X) = N

(
1

k
+ 1− (1− p)k

)
≈ N

(
1

k
+ pk

)
.

If p = 0.01, k = 10, we have

E(X) ≈ N

(
1

10
+ 0.01 · 10

)
= N · 2

10
=

1

5
N,

which is 20% of N .
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2024.2 Question 12

1. Let Xi be the number that the ith player receives, and let Ada be the first player. We have

P(X1 = a,X2 > X1, X3 > X1, · · · , Xk > X1) = P(X1 = a,X2 > a,X3 > a, · · · , Xk > a)

= P(X1 = a) P(X2 > a) P(X3 > a) · · ·P(Xk > a)

=
1

n
· n− a

n
· n− a

n
· · · n− a

n

=
(n− a)k−1

nk
.

Hence, the probability of Ada winning this is

P(X2 > X1, X3 > X1, · · · , Xk > X1) =

n−1∑
a=1

P(X1 = a,X2 > X1, X3 > X1, · · · , Xk > X1)

=

n−1∑
a=1

(n− a)k−1

nk

=
1

nk

n−1∑
a=1

ak−1,

and the probability of there being a winner is the sum of the probabilities of each player winning,
which are all equal to the probability of Ada winning by symmetry, and hence is equal to

k · 1

nk

n−1∑
a=1

ak−1 =
k

nk

n−1∑
a=1

ak−1.

If k = 4, then this probability is given by

P =
4

n4

n−1∑
a=1

a3

=
4

n4
· (n− 1)2n2

4

=
(n− 1)2

n2
,

precisely as desired.

2. Similarly, let Xi be the number that the ith player receives, and let Ada be the first player, and
Bob be the second player. We have

P(X1 = a,X2 = a+ d+ 1, X1 < X3 < X2, · · · , X1 < Xk < X2)

= P(X1 = a,X2 = a+ d+ 1, a < X3 < a+ d+ 1, · · · , a < Xk < a+ d+ 1)

= P(X1 = a) P(X2 = a+ d+ 1)P(a < X3 < a+ d+ 1) · · ·P(a < Xk < a+ d+ 1)

=
1

n
· 1
n
· d
n
· · · d

n

=
dk−2

nk
.
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Hence, the probability that both Ada and Bob winning this is

P(X1 < X3 < X2, · · · , X1 < Xk < X2)

=

n−2∑
d=1

n−d−1∑
a=1

P(X1 = a,X2 = a+ d+ 1, X1 < X3 < X2, · · · , X1 < Xk < X2)

=

n−2∑
d=1

n−d−1∑
a=1

dk−2

nk

=

n−2∑
d=1

(n− d− 1)dk−2

nk

=
1

nk

n−2∑
d=1

(n− d− 1)dk−2

=
1

nk

[
(n− 1)

n−2∑
d=1

dk−2 −
n−2∑
d=1

dk−1

]
.

Hence, the probability that there are two winners in this game is the sum of the probabilities of
each ordered pair of players winning (since there is one winning by having a bigger number, and
one winning by having a smaller number), and hence is equal to

2 ·
(
k

2

)
· 1

nk

[
(n− 1)

n−2∑
d=1

dk−2 −
n−2∑
d=1

dk−1

]
.

When k = 4, the probability is

P = 2 ·
(
4

2

)
· 1

n4

[
(n− 1)

n−2∑
d=1

d2 −
n−2∑
d=1

d3

]

= 26̇ · 1

n4

[
(n− 1)(n− 2)(n− 1)(2n− 3)

6
− (n− 2)2(n− 1)2

4

]
= 12 · 1

n4
· (n− 1)2(n− 2)

[
2(2n− 3)− 3(n− 2)

12

]
=

(n− 1)2(n− 2)

n4
· n

=
(n− 2)(n− 1)2

n3
.

The probability of there being a winner due to having the biggest number (denote this event as
B), is the same as there being a winner due to having the lowest number (denote this event as L),
which are both equal to the answer to the first part of the question:

P(B) = P(L) =
(n− 1)2

n2
.

The event of having two winners is B,L and the event of having precisely one winner is B, L̄ or
L, B̄. By the inclusion-exclusion principle, the probability of having precisely one winner is given
by

P = P(B) + P(L)− 2P(B,L)

= 2 · (n− 1)2

n2
− 2 · (n− 2)(n− 1)2

n3

=
2(n− 1)2

n3
· [n− (n− 2)]

=
4(n− 1)2

n3
.
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This probability is smaller than P(B,L), if and only if

4(n− 1)2

n3
<

(n− 2)(n− 1)2

n3

4 < n− 2

n > 6,

and hence the minimum value of n for this is 7.
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2024.3 Question 1

1. For the first identity, notice that

1

r + 1
− 1

r
+

1

r2
=

r2 − r(r + 1) + (r + 1)

r2(r + 1)

=
r2 − r2 − r + r + 1

r2(r + 1)

=
1

r2(r + 1)
,

and hence using this,

N∑
r=1

1

r2(r + 1)
=

N∑
r=1

(
1

r + 1
− 1

r
+

1

r2

)

=

N∑
r=1

1

r2
+

N∑
r=1

1

r + 1
−

N∑
r=1

1

r

=

N∑
r=1

1

r2
+

N+1∑
r=2

1

r
−

N∑
r=1

1

r

=

N∑
r=1

1

r2
− 1

1
+

1

N + 1

=

N∑
r=1

1

r2
− 1 +

1

N + 1
.

Let N → ∞, and we have 1
N+1 → 0, and hence

∞∑
r=1

1

r2(r + 1)
=

∞∑
r=1

1

r2
− 1 =

π2

6
− 1.

2. By partial fractions, let

1

r2(r + 1)(r + 2)
=

Ar +B

r2
+

C

r + 1
+

D

r + 2

for real constants A,B,C and D.

Hence,
(Ar +B)(r + 1)(r + 2) + Cr2(r + 2) +Dr2(r + 1) = 1.

Let r = −2, we have D · (−2)2 · (−1) = −4D = 1, and hence D = − 1
4 .

Let r = −1, we have C · (−1)2 · 1 = C = 1, and hence C = 1.

Let r = 0, we have B · 1 · 2 = 1, and hence B = 1
2 .

Considering the coefficient of r3, we have A+ C +D = 0, and hence A = − 3
4 .

Hence,
1

r2(r + 1)(r + 2)
= −3

4
· 1
r
+

1

2
· 1

r2
+

1

r + 1
− 1

4
· 1

r + 2
.
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Therefore,

N∑
r=1

1

r2(r + 1)(r + 2)
= −3

4

N∑
r=1

1

r
+

1

2

N∑
r=1

1

r2
+

N∑
r=1

1

r + 1
− 1

4

N∑
r=1

1

r + 2

=
1

2
SN − 3

4
·

N∑
r=1

1

r
+

N+1∑
r=2

1

r
− 1

4

N+2∑
r=3

1

r

=
1

2
SN − 3

4

N∑
r=3

1

r
+

N∑
r=3

1

r
− 1

4

N∑
r=3

1

r

=
1

2
SN − 3

4

(
1

1
+

1

2

)
+

(
1

2
+

1

N + 1

)
− 1

4

(
1

N + 1
+

1

N + 2

)
=

1

2
SN − 9

8
+

4

8
+

3

4
· 1

N + 1
− 1

4
· 1

N + 2

=
1

2
SN − 5

8
+

3

4
· 1

N + 1
− 1

4
· 1

N + 2
.

Let N → ∞, we have 1
N+1 ,

1
N+2 → 0, and hence

∞∑
r=1

1

r2(r + 1)(r + 2)
=

1

2
lim

N→∞
SN − 5

8
=

π2

12
− 5

8
.

3. Similarly, let
1

r2(r + 1)2
=

A

r2
+

B

r
+

C

(r + 1)2
+

D

r + 1

for some real constants A,B,C and D.

Hence,
1 = A(r + 1)2 +Br(r + 1)2 + Cr2 +Dr2(r + 1).

Let r = 0, and we have A = 1. Let r = −1, and we have C = 1. Considering the coefficient of r3

we have B +D = 0, and for r, 2A+B = 0.

Hence, B = −2, D = 2, and

1

r2(r + 1)2
=

1

r2
− 2

r
+

1

(r + 1)2
+

2

r + 1
.

Therefore, for natural numbers N , we have

N∑
r=1

1

r2(r + 1)2
=

N∑
r=1

1

r2
+

N∑
r=1

1

(r + 1)2
+ 2

N∑
r=1

1

r + 1
− 2

N∑
r=1

1

r

= SN +

N+1∑
r=1

1

r2
+ 2

N+1∑
r=2

1

r
− 2

N∑
r=1

1

r

= SN + SN+1 −
1

12
+ 2 · 1

N + 1
− 2 · 1

= SN + sN+1 + 2 · 1

N + 1
− 3.
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Let N → ∞. SN , SN+1 → π2

6 , and 1
N+1 → 0. Hence,

∞∑
r=1

1

r2(r + 1)2
= 2 · π

2

6
− 3

=
π2

3
− 3

= 2 ·
(
π2

6
− 1

)
− 1

= 2

∞∑
r=1

1

r2(r + 1)
− 1

=

∞∑
r=1

2

r2(r + 1)
− 1,

as desired.
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2024.3 Question 2

1. (a) We have √
4x2 − 8x+ 64 ≤ |x+ 8| ⇐⇒ 0 ≤ 4x2 − 8x+ 64 ≤ (x+ 8)2.

The left inequality can be simplified as follows:

4x2 − 8x+ 64 ≥ 0

x2 − 2x+ 16 ≥ 0

(X − 1)2 + 15 ≥ 0,

which is always true.

The right inequality can be simplified as follows:

4x2 − 8x+ 64 ≤ (x+ 8)2

4x2 − 8x+ 64 ≤ x2 + 16x+ 64

3x2 − 24x ≤ 0

x(x− 8) ≤ 0,

which solves to 0 ≤ x ≤ 8.

Hence, the solution to the original inequality is x ∈ [0, 8].

(b) WE have √
4x2 − 8x+ 64 ≤ |3x− 8| ⇐⇒ 0 ≤ 4x2 − 8x+ 64 ≤ (3x− 8)2.

The left inequality is always true from the previous part.

The right inequality can be simplified as follows:

4x2 − 8x+ 64 ≤ (3x− 8)2

4x2 − 8x+ 64 ≤ 9x2 − 48x+ 64

5x2 − 40x ≥ 0

x(x− 8) ≥ 0,

which solves to x ≤ 0 or x ≥ 8.

Hence, the solution to the original inequality is x ∈ (−∞, 0] ∪ [8,∞).

2. (a) We have (√
4x2 − 8x+ 64 + 2(x− 1)

)
f(x) =

(√
4x2 − 8x+ 64

)2
− [2(x− 1)]2

=
(
4x2 − 8x+ 64

)
− 4

(
x2 − 2x+ 1

)
=
(
4x2 − 8x+ 64

)
−
(
4x2 − 8x+ 4

)
= 60.

Hence,

f(x) =
60√

4x2 − 8x+ 64 + 2(x− 1)
.

As x → ∞,
√
4x2 − 8x+ 64 → ∞, 2(x− 1) → ∞.

Hence, f(x) → 0 as x → ∞.

(b) Let f1(x) =
√
4x2 − 8x+ 64, f2(x) = 2(x− 1).

f1(0) =
√
64 = 8, and f2(0) = 2 · (−1) = −2.

We have f(x) = f1(x)− f2(x) > 0 from the previous part, and that f1(x) is defined for all x
and is always positive.

Furthermore,

f1(x) = 2
√

x2 − 2x+ 16 = 2
√
(x− 1)2 + 15,

and hence f1 decreases on (−∞, 1) and increases on (1,∞), taking a minimum of f1(1) = 2
√
15.

In terms of symmetry, we have f1(1 − x) = f1(1 + x) and f2(1 − x) = −f2(1 + x). f2 is an
asymptote to f1 as x → ∞, and −f2 is an asymptote to f1 as x → −∞.

Hence, the sketch looks as follows.
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x

y

y =
√
4x2 − 8x+ 64

y = 2(x− 1)

y = 2(1− x)

(0,−2)

(2, 2)

(0, 8) (2, 8)(
1, 2

√
15
)8

2
√
15

2

−2

1 2O

3. Let x = 3, and we must have
√
4 · 9− 5 · 3 + 4 = |3m+ c|, and hence 5 = |3m+ c|.

This is only achievable for m = ±2 due to the diagram – the solution set can only be ’one-sided’
if on the other side the absolute value is eventually ’parallel’ to the curve.

We let m = 2, and hence 5 = |6 + c|, which gives c = −1 or c = −11.

We would like to show that the desired value is c = −1, and that c = −11 does not work.√
4x2 − 5x+ 4 ≤ |2x− 1| ⇐⇒ 0 ≤ 4x2 − 5x+ 4 ≤ (2x− 1)2.

The left inequality can be simplified as

0 ≤ 4x2 − 5x+ 4 =

(
2x− 5

4

)2

+
39

16
,

and hence is always true.

The right inequality can be simplified as

4x2 − 5x+ 4 ≤ (2x− 1)2

4x2 − 5x+ 4 ≤ 4x2 − 4x+ 1

x ≥ 3,

and hence the solution set to the whole inequality is x ≥ 3 as desired.

On the other hand, for the case of c = −11, we have√
4x2 − 5x+ 4 ≤ |2x− 11| ⇐⇒ 0 ≤ 4x2 − 5x+ 4 ≤ (2x− 11)2,
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and the left inequality is always true by previously. However, the right inequality simplifies as

4x2 − 5x+ 4 ≤ (2x− 11)2

4x2 − 5x+ 4 ≤ 4x2 − 44x+ 121

39x ≤ 117

x ≤ 3,

and the inequality is in the wrong direction.

Hence, a possible value of m is 2, and the corresponding value of c is −1.

4. The diagram as follows shows the only possibility of the configuration.

x

y

O

y =
∣∣x2 + px+ q

∣∣

y = mx+ c

−5 1 5 7

Hence, we must have x2 + px+ q = mx+ c for x = −5 and x = 7, and x2 + px+ q = −mx− c for
x = 1 and x = 5. 

25− 5p+ q = −5m+ c,

49 + 7p+ q = 7m+ c,

1 + p+ q = −(m+ c),

25 + 5p+ q = −(5m+ c).

Subtracting the first equation from the final equation gives 10p = −2c, and hence c = −5p.

Subtracting the first equation from the second equation gives us 24 + 12p = 12m, and hence
m = 2 + p.

Putting these into the third equation gives

q = −m− c−;−1

= −(2 + p)− (−5p)− p− 1

= 3p− 3.
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Putting all these into the final equation gives

25 + 5p+ (3p− 3) = − [5(2 + p) + (−5p)]

25 + 8p− 3 = −(10 + 5p− 5p)

22 + 8p = −10

8p = −32

p = −4,

and so q = −15,m = −2, c = 20. Hence,

(p, q,m, c) = (−4,−15,−2, 20).
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2024.3 Question 3

1. (a) Notice that by partial fractions, we have

x+ c

x(x+ 1)
=

1− c

x+ 1
+

c

x
.

Hence, by differentiating, we have

g′(x) =
1

1 + 1
x

·
(
− 1

x2

)
+

1− c

(x+ 1)2
+

c

x2

= − 1

x2 + x
+

1− c

(x+ 1)2
+

c

x2

=
−x(x+ 1) + (1− c)x2 + c(x+ 1)2

(x+ 1)2x2

=
cx2 + 2cx+ c+ x2 − cx2 − x2 − x

(x+ 1)2x2

=
(2c− 1)x+ c

(x+ 1)2x2
.

Given that c ≥ 1
2 , and x > 0, we have 2c− 1 ≥ 0, and (2c− 1)x ≥ 0.

Hence, the numerator satisfies (2c − 1)x + c ≥ c ≥ 1
2 > 0, and the denominator is always

positive since is a product of squares, and both squares are non-zero since x > 0.

We can now conclude that g′(x) > 0 given c ≥ 1
2 for x > 0, as desired.

(b) If 0 ≤ c < 1
2 , g

′(x) < 0 if and only if

(2c− 1)x+ c < 0

(1− 2c)x− c > 0

(1− 2c)x > c

x >
c

1− 2c
,

and the values of x are x > c
1−2c .

2. (a) If c = 3
4 ≥ 1

2 , we can see that g is always increasing.

As x → ∞, x+c
x(x+1) → 0, ln

(
1 + 1

x

)
→ ln 1 = 0. Hence, g(x) → 0.

Since g is increasing it must stay entirely below the x-axis.

The sketch is as follows.

x

y

O

(b) If c = 1
4 ∈

[
0, 1

2

)
, it must be the case that g′(x) > 0 for 0 < x < c

1−2c = 1
2 , and g′(x) < 0 for

x > 1
2 .
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Hence, x = 1
2 is a maximum on the graph, and the corresponding y-coordinate is g

(
1
2

)
=

ln 3− 1.

Similarly, as x → ∞, g(x) → 0.

The sketch is as follows.

x

y

O

(
1
2 , ln 3− 1

)

3. We have

f(x) =

(
1 +

1

x

)x+c

ln f(x) = (x+ c) ln

(
1 +

1

x

)
f ′(x)

f(x)
= ln (1 + x)− (x+ c)

1

x(x+ 1)

f ′(x)

f(x)
= g(x)

f ′(x) = f(x)g(x).

f(x) is positive for x > 0, and hence f ′(x) takes the same sign as g(x).

(a) If c ≥ 1
2 , g is increasing and has a limit of 0 at infinity. Hence, g(x) is negative for all x > 0,

which means f ′(x) is negative for all x > 0, and hence f is decreasing.

(b) If 0 < c < 1
2 , g is negative first, then increases to a positive value, and remains positive and

approaches 0 decreasing from above. Hence, f ′ is first positive and then negative, so f must
have a turning point.

(c) If c = 0,

g′(x) =
−x

(x+ 1)2x2
= − 1

(x+ 1)2x

is always negative, and limx→0+ g′(x) = −∞, limx→∞ g′(x) = 0.

We have

g(x) = ln

(
1 +

1

x

)
− 1

x+ 1
.

As x → 0+, 1
x → ∞, so ln

(
1 + 1

x

)
→ ∞, and − 1

x+1 → − 1
1 = −1. Hence, g(x) → ∞.

As x → ∞, g(x) → 0.

Since g is decreasing, it must be the case that g is always positive.

This means that f ′ is always positive as well, and hence f is increasing.
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2024.3 Question 4

1. The angle between a line with gradient m and the positive x-axis is arctanm. Hence, we must have

arctanm1 − arctanm2 = ±π

4

tan (arctanm1 − arctanm2) = tan
(
±π

4

)
m1 −m2

1 +m1m2
= ±1,

as desired.

2. We have y = x2

4a , and hence dy
dx = x

2a . Hence, the tangent to the point
(
p, p2

4a

)
is given by

y − p2

4a
=

p

2a
(x− p)

4ay − p2 = 2p(x− p)

4ay = 2px− p2,

with gradient 2p
4a = p

2a , and the tangent to the point
(
q, q2

4a

)
is given by 4ay = 2qx + q2, with

gradient q
2a .

Hence, when they intersect, it must be the case that

2px− p2 = 2qx− q2

2(p− q)x = p2 − q2

2(p− q)x = (p+ q)(p− q)

x =
p+ q

2

since p ̸= q.

The y-coordinate is given by

y =
2px− p2

4a

=
p2 + pq − p2

4a

=
pq

4a
.

If the two curves meet at π
4 , the gradients must satisfy that

p
2a − q

2a

1 + p
2a · q

2a

= ±1

2a(p− q)

4a2 + pq
= ±1

2a(p− q) = ±
(
4a2 + pq

)
4a2(p− q)2 = (4a2 + pq)2

4a2p2 − 8a2pq + 4a2q2 = 16a4 + 8a2pq + p2q2

p2q2 + 16a2pq + 16a4 − 4a2p2 − 4a2q2 = 0.

For the intersection of the two tangents, we consider (y + 3a)2 − (8a2 + x2).

(y + 3a)2 − (8a2 + x2) = y2 + 6ay + 9a2 − 8a2 − x2

= y2 + 6ay − x2 + a2

=
p2q2

16a2
+ 6a · pq

4a
−
(
p+ q

2

)2

+ a2

=
p2q2

16a2
+

3pq

2
− (p+ q)2

4
+ a2.
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We have the following being equivalent:

(y + 3a)2 = 8a2 + x2

p2q2

16a2
+

3pq

2
− (p+ q)2

4
+ a2 = 0

p2q2 + 3pq · 8a2 − (p+ q)2 · 4a2 + a2 · 16a2 = 0

p2q2 + 24pqa2 − 4a2p2 − 4a2q2 − 8pqa2 + 16a4 = 0

p2q2 + 16a2pq + 16a4 − 4a2p2 − 4a2q2 = 0,

which was true due to the tangents intersecting at π
4 .

Hence, we must have the intersection of two tangents lie on (y + 3a)2 = 8a2 + x2, which finishes
our proof.

3. Let θ be this acute angle, and from the previous part, we can see that

4a2(p− q)2 = tan2 θ(4a2 + pq)2

4a2p2 − 8a2pq + 4a2q2 = tan2 θ16a4 + tan2 θ8a2pq + tan2 θp2q2

tan2 θp2q2 + 8(tan2 θ + 1)a2pq + tan2 θ16a4 = 4a2p2 + 4a2q2

Given (y + 7a)2 = 48a2 + 3x2 for the intersection of the two tangents, we have

(y + 7a)2 −
(
48a2 + 3x2

)
= 0(pq

4a
+ 7a

)2
−

(
48a2 + 3

(
p+ q

2

)2
)

= 0

p2q2

16a2
+

7pq

2
+ 49a2 − 48a2 − 3(p+ q)2

4
= 0

p2q2 + 8a2 · 7pq + 16a4 − 3(p+ q)2 · 4a2 = 0

p2q2 + 56pqa2 + 16a4 − 12p2a2 − 12q2a2 − 24pqa2 = 0

p2q2 + 32pqa2 + 16a4 − 12p2a2 − 12q2a2 = 0

p2q2 + 32pqa2 + 16a4 − 3
(
tan2 θp2q2 + 8(tan2 θ + 1)a2pq + 16 tan2 θa4

)
= 0

(1− 3 tan2 θ)p2q2 + 8(1− 3 tan2 θ)pqa2 + 16(1− 3 tan2 θ)a4 = 0

(1− 3 tan2 θ)
[
p2q2 + 8pqa2 + 16a4

]
= 0

(1− 3 tan2 θ)(pq + 4a2)2 = 0.

Hence, either pq + 4a2 = 0, or 1 − 3 tan2 θ = 0. The former cannot always the case. Therefore,

1− 3 tan2 θ = 0, which gives tan θ = ±
√
3
3 .

Since θ is acute, we have tan θ =
√
3
3 , and hence θ = π

6 is the acute angle between the two tangents.

Eason Shao Page 415 of 430



STEP Project Year 2024 Paper 3

2024.3 Question 5

1. Let

M =

(
a b
c d

)
,N =

(
e f
g h

)
,

and hence we have
trM = a+ d, trN = e+ h.

Notice that

MN =

(
ae+ bg af + bh
ce+ dg cf + dh

)
,NM =

(
ae+ cf be+ df
ag + ch bg + dh

)
,

which means
tr(MN) = ae+ bg + cf + dh, tr(NM) = ae+ cf + bg + dh,

and hence tr(MN) = tr(NM) as desired.

We also have

M+N =

(
a+ e b+ f
c+ g d+ h

)
,

meaning tr(M+N) = a+ e+ d+ h = (a+ d) + (e+ h) = trM+ trN.

2. We have detM = ad− bc, and hence

d

dt
detM = ȧd+ aḋ− ḃc− bċ.

Hence,

LHS =
1

ad− bd

(
ȧd+ aḋ− ḃc− bċ

)
.

On the other hand,
dM

dt
=

(
ȧ ḃ

ċ ḋ

)
,M−1 =

1

ad− bc

(
d −b
−c a

)
,

and hence

M−1 dM

dt
=

1

ad− bc

(
d −b
−c a

)(
ȧ ḃ

ċ ḋ

)
=

1

ad− bc

(
ȧd− bċ ḃd− bḋ

−ȧc+ aċ −ḃc+ aḋ

)
.

Hence,

RHS = tr

(
M−1 dM

dt

)
=

1

ad− bc

(
ȧd− bċ− ḃc+ aḋ

)
=

1

ad− bc

(
ȧd+ aḋ− bċ− ḃc

)
= LHS,

as desired.

3. detM ̸= 0 since M is non-singular, and hence left-multiplying by M−1 on both sides gives us

M−1 dM

dt
= N−M−1NM.
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Taking trace on both sides, we have

1

detM

d

dt
detM = tr

(
M−1 dM

dt

)
= tr

(
N−M−1NM

)
= trN− tr

(
M−1NM

)
= trN− tr

((
M−1N

)
M
)

= trN− tr
(
M
(
M−1N

))
= trN− tr

((
MM−1

)
N
)

= trN− tr (IN)

= trN− trN

= 0.

Hence, d
dt detM = 0, which means detM is a constant independent of t.

Directly taking trace on both sides, we have

tr
dM

dt
= tr(MN−NM)

= tr(MN)− tr(NM)

= 0,

and note

tr
dM

dt
=

d

dt
trM,

and hence
d

dt
trM = 0,

meaning trM is a constant independent of t.

Notice that

tr
(
M2
)
= tr

[(
a b
c d

)(
a b
c d

)]
= a2 + bc+ bc+ d2 = a2 + 2bc+ d2.

Since trM and detM are both independent of t, we must have

(trM)2 − 2 detM = (a+ d)2 − 2(ad− bc)

= a2 + 2ad+ d2 − 2ad+ 2bc

= a2 + 2bc+ d2

= tr
(
M2
)

is independent of t as well.

Let

M =

(
A+ x b

c D − x

)
,

the diagonal ones being so since the trace is independent of t. Here, x is a function of t.

By differentiating,
dM

dt
=

(
ẋ ḃ
ċ −ẋ

)
,

and the right-hand side satisfies

MN−NM =

(
A+ x b

c D − x

)(
t t

t

)
−
(
t t

t

)(
A+ x b

c D − x

)
=

(
t(A+ x) (A+ x)t+ bt

ct ct+ (D − x)t

)
−
(
t(A+ x) + ct bt+ t(D − x)

ct t(D − x)

)
=

(
−ct (A−D + 2x)t
0 ct.

)
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Comparing the components, we see that ċ = 0, meaning that c is a constant: c = C.

Hence, ẋ = −Ct, which solves to x = −Ct2

2 , since x = 0 when t = 0.

This means
ḃ = (A−D + 2x)t = (A−D − Ct2)t,

and hence

b =
(A−D)t2

2
− Ct4

4
+B

since b = B when t = 0.

Hence,

M =

(
A− Ct2/2 (A−D)t2/2− Ct4/4

C D + Ct2/2

)
is the solution given the conditions.

4. By rearranging, we have

N = M−1 dM

dt
.

Hence, let

M =

(
1 + et

1− et

)
,

we have
trM = 2

which is non-zero and independent of t.

Hence,

M−1 =
1

1− e2t

(
1− et

1 + et

)
,
dM

dt
=

(
et

−et

)
,

so

N =
1

1− e2t

(
1− et

1 + et

)(
et

−et

)
=

1

1− e2t

(
et(1− et)

−et(1 + et)

)
,

which gives

trN =
e2t

e2t − 1

which is clearly non-zero.
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2024.3 Question 6

1. (a) We have

dx− y

dt
=

dx

dt
− dy

dt
= (−x+ 3y + u)− (x+ y + u)

= −2x+ 2y

= −2(x− y).

This is a differential equation for x− y in terms of t, and hence it solves to

x− y = Ae−2t.

If x = y = 0 for some t > 0, then it must be the case that A = 0, giving x− y = 0, and x = y.

Therefore, for t = 0, we must also necessarily have x0 = y0.

(b) Given that x0 = y0, we must have x = y for all t > 0. Hence,

dx

dt
= −x+ 3x+ u

dx

dt
= 2x+ u

dx

2x+ u
= dt

ln|2x+ u| = 2t+ C

2x+ u = Ae2t.

Since at t = 0, x = x0, we must have A = 2x0 + u, and hence

2x+ u = (2x0 + u)e2t,

and rearranging gives

u =
2(x0e

2t − x)

1− e2t
.

The particle is at origin at time t = T > 0, and hence x = y = 0 for t = T , and hence

u =
2x0e

2T

1− e2T
.

This ensures the particle is at origin as well since this ensures the particle is at x = 0 for
t = T , and y = x so y = 0 as well.

2. (a) Consider dx
dt + dz

dt − 2dy
dt , and we have

dx+ z − 2y

dt
=

dx

dt
+

dz

dt
− 2

dy

dt
= (4y − 5z + u) + (x− 2y + u)− 2(x− 2z + u)

= 4y − 5z + u+ x− 2y + u− 2x+ 4z − 2u

= −x− z + 2y,

and hence
x+ z − 2y = Ae−t.

Since the particle is at the origin at some time t > 0, we must have A = 0, and hence

x+ z − 2y = 0,

which means y = x+z
2 for all time t.

At time t = 0, y0 = x0+z0
2 , and so y0 is the mean of x0 and z0.
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(b) Since 2y = x+ z, we must have

dx

dt
= 2(x+ z)− 5z + u = 2x− 3z + u,

and
dz

dt
= x− (x+ z) + u = −z + u.

Hence, considering dx
dt − dz

dt , we have

dx− z

dt
=

dx

dt
− dz

dt
= (2x− 3z + u)− (−z + u)

= 2(x− z),

which gives
x− z = Ae2t.

Since the particle is at the origin for some t > 0, we must have A = 0. This means x = z for
all t, and further we have x = y = z for all t since 2y = x+ z.

At t = 0, this means x0 = y0 = z0 as desired.

(c) Given that x0 = y0 = z0, all previous parts still apply, since the boundary condition of
2y = x+ z and x = z holds for t = 0. Hence, x = y = z for all t, and

dx

dt
= −x+ u

dx

x− u
= −dt

ln|x− u| = −t+ C

x− u = Ae−t.

At t = 0, x = x0, we must have A = x0 − u, and hence

x− u = (x0 − u)e−t,

and rearranging gives

u =
x0e

−t − x

1− e−t
.

The particle is at origin at a time t = T > 0, and hence x = y = z = 0 for t = T , and hence

u =
x0e

−T

1− e−T
=

x0

1 + eT
.

This ensures the particle is at origin as well since this ensures the particle is at x = 0 for
t = T , and x = y = z, so y = z = 0 as well.
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2024.3 Question 7

1. For the left inequality, f(n) > 0 since f(n) > 1
n+1 > 0.

For the right inequality, we notice that

f(n) =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

<
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1

n+ 1
· 1

1− 1
n+1

=
1

(n+ 1)− 1

=
1

n
.

Hence,

0 < f(n) <
1

n
.

2. For the left inequality, by grouping consecutive terms, we have

g(n) =
1

n+ 1
− 1

(n+ 1)(n+ 2)

+
1

(n+ 1)(n+ 2)(n+ 3)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+ · · ·

=

(
1

n+ 1
− 1

(n+ 1)(n+ 2)

)
+

(
1

(n+ 1)(n+ 2)(n+ 3)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

)
+ · · ·

>

(
1

n− 1
− 1

n+ 1

)
+

(
1

(n+ 1)(n+ 2)(n+ 3)
− 1

(n+ 1)(n+ 2)(n+ 3)

)
+ · · ·

= 0 + 0 + · · ·
= 0,

using the inequality

1

(n+ 1) · · · (n+ k)
>

1

(n+ 1) · · · (n+ k)(n+ k + 1)
.
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For the right inequality, by grouping consecutive after the first one, we have

g(n) =
1

n+ 1
− 1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)

− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
− · · ·

=
1

n+ 1
−
(

1

(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)(n+ 3)

)
−
(

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)

)
− · · ·

<
1

n+ 1
−
(

1

(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)

)
−
(

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

)
− · · ·

=
1

n+ 1
− 0− 0− · · ·

=
1

n+ 1
,

using the inequality

1

(n+ 1) · · · (n+ k − 1)(n+ k)
<

1

(n+ 1) · · · (n+ k − 1)
.

Hence,

0 < g(n) <
1

n+ 1
.

3. The infinite series for e is given by

e =

∞∑
t=0

1

t!
,

and notice that

f(n) =

∞∑
t=1

n!

(n+ t)!
= n!

∞∑
t=1

1

(n+ t)!
.

Hence,

(2n)!e− f(2n) = (2n)!

∞∑
t=0

1

t!
− (2n)!

∞∑
t=1

1

(2n+ t)!

= (2n)!

( ∞∑
t=0

1

t!
−

∞∑
t=2n+1

1

t!

)

= (2n)!

2n∑
t=0

1

t!

=

2n∑
t=0

(2n)!

t!
.

Since t ≤ 2n, the terms in the sum represents the number of ways to arrange (2n− t) items out of
2n items, which must be integers. Hence, the sum is an integer as well.

Similarly, the infinite series for e−1 is given by

e−1 =

∞∑
t=0

(−1)t

t!
,

and notice that

g(n) = −
∞∑
t=1

(−1)tn!

(n+ t)!
= −n!

∞∑
t=1

(−1)t

(n+ t)!
.
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Hence,

(2n)!

e
+ g(2n) = (2n)!

∞∑
t=0

(−1)t

t!
− (2n)!

∞∑
t=1

(−1)t

(n+ t)!

= (2n)!

( ∞∑
t=0

(−1)t

t!
−

∞∑
t=2n+1

(−1)t

t!

)

= (2n)!

2n∑
t=0

(−1)t

t!

=

2n∑
t=0

(−1)t(2n)!

t!
,

and by the same argument, since t ≤ 2n, this must be an integer as well.

4. By the previous part, let a(n) = f(2n) − (2n)!e, and b(n) = g(2n) + (2n)!
e , we must have that

a, b : N → Z since they are integers.

Using this notation,

qf(2n) + pg(2n) = qa(2n) + qe(2n)! + pb(2n)− p

e
(2n)!

= qa(2n) + pb(2n) +
(
qe− p

e

)
(2n)!

= qa(2n) + pb(2n)

must be an integer, since p, q, a(2n), b(2n) are all integers.

5. Assume B.W.O.C. that e2 is irrational. Then there exists natural numbers p, q such that

e2 =
p

q
⇐⇒ qe =

p

e
.

Since e2 > 1, p > q.

On one hand, we have qf(2n) + pg(2n) > 0.

On the other hand, let n = p,

qf(2n) + pg(2n) < q · 1

2p
+ p · 1

2p+ 1

< q · 1

2p
+ p · 1

2p

=
p+ q

2p

<
2p

2p

= 1.

This means
0 < qf(2p) + pg(2p) < 1.

But by the previous part, qf(2n) + pg(2n) is an integer for all positive integer n, and n = p is a
positive integer. This leads to a contradiction.

Hence, such p and q does not exist, meaning e2 is not rational, hence e2 is irrational.
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2024.3 Question 8

1. (y− x+3)(y+ x− 5) = 0 if and only if y− x+3 = 0, or y+ x− 5 = 0. In the first case, y = x− 3,
representing a straight line with gradient 1, and in the second case, y = −x + 5, representing a
straight line with gradient −1.

The equation represents a pair of straight lines with gradients 1 and −1 if and only if it could be
factorised into the form (y − x+ a)(y + x− b).

(y − x+ a)(y + x+ b) = y2 + xy + by − xy − x2 − bx+ ay + ax+ ab

= y2 − x2 + (a+ b)y + (a− b)x+ ab,

and p = a+ b, q = a− b, r = ab.

On one hand, if it could be factorised into this form, we have

p2 − q2 = (a+ b)2 − (a− b)2 = a2 + 2ab+ b2 − a2 + 2ab− b2 = 4ab = 4r.

On the other hand, let a = p+q
2 , b = p−q

2 , and we have

a+ b = p, a− b = q, ab =
p+ q

2

p− q

2
=

p2 − q2

4
=

4r

4
= r.

This shows that this is a necessary and sufficient condition, which finishes our proof.

2. Since the point (x, y) lies on C1, we must have y = x2, and y − x2 = 0.

Since it lies on C2, we must have x = y2 + 2sy + s(s+ 1), and y2 + 2sy + s(s+ 1)− x.

Hence,

LHS = y2 + 2sy + s(s+ 1)− x+ k(y − x2)

= 0 + k · 0
= 0

= RHS

for any real number k.

Let k = 1, by rearranging, we have

y2 − x2 + (2s+ 1)y − x+ s(s+ 1) = 0.

We notice that

(2s+ 1)2 − (−1)2 = 4s2 + 4s+ 1− 1

= 4s2 + 4s

= 4s(s+ 1),

which means that this represents a pair of straight lines with gradients 1 and −1. The four points
of intersection must lie on them.

3. By part (ii), we have a = (2s+1)−1
2 = s, and b = (2s+1)−(−1)

2 = s+ 1. This means

(y − x+ s)(y + x+ s+ 1) = 0,

and the lines are y = x− s and y = −x− s− 1.

Since a straight line may at most meet a polynomial twice, we must have y = x− s meets y = x2

at two distinct point, and y = −x− s− 1 meets y = x2 at two distinct points as well.

x2 = x− s ⇐⇒ x2 − x+ s = 0, and hence 1− 4s > 0, which shows that s < 1
4 .

x2 −−x− s− 1 ⇐⇒ x2 + x+ (s+ 1) = 0, and hence 1− 4(s+ 1) > 0, which shows that s < − 3
4 .

Hence, s < − 3
4 .
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4. The lines are y = x− s and y = −x− s− 1. Since s < − 3
4 , both lines intersect y = x2 on precisely

two points, since the discriminant for the quadratic is positive. Hence, we just have to show that
none of those four points are the same.

This could only be the case of the intersection of the intersection of the two lines, which is(
− 1

2 ,−
2s+1
2

)
. This lies on y = x2 if and only if

−2s+ 1

2
=

(
−1

2

)2

⇐⇒ −s− 1

2
=

1

4
⇐⇒ s = −3

4

which is not the case here.

Hence, C1 and C2 must intersect at four distinct points.
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2024.3 Question 11

1. We notice that

LHS = r

(
2n

r

)
= r · (2n)!

r!(2n− r)!

=
(2n)!

(r − 1)!(2n− r)!
,

and

RHS = (2n+ 1− r)

(
2n

2n+ 1− r

)
= (2n+ 1− r) · (2n)!

(r − 1)!(2n+ 1− r)!

=
(2n)!

(r − 1)!(2n− r)!
.

Hence,

r

(
2n

r

)
= (2n+ 1− r)

(
2n

2n+ 1− r

)
as desired.

Summing this from r = n+ 1 to 2n, we have

2n∑
r=n+1

r

(
2n

r

)
=

2n∑
r=n+1

(2n+ 1− r)

(
2n

2n+ 1− r

)

=

n∑
r=1

(2n+ 1− (2n+ 1− r))

(
2n

2n+ 1− (2n+ 1− r)

)

=

n∑
r=1

r

(
2n

r

)
,

and hence

2n∑
r=0

r

(
2n

r

)
=

2n∑
r=1

r

(
2n

r

)

=

n∑
r=1

r

(
2n

r

)
+

2n∑
r=n+1

r

(
2n

r

)

=

2n∑
r=n+1

r

(
2n

r

)
+

2n∑
r=n+1

r

(
2n

r

)

= 2

2n∑
r=n+1

r

(
2n

r

)
,

as desired.

2. For n+ 1 ≤ x ≤ 2n, we have

P(X = x) = 2 ·
(
2n
x

)
22n

.

For x = n, we have

P(X = x) =

(
2n
n

)
22n

.
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We have n ≤ X ≤ 2n, and hence

E(X) =

2n∑
x=n

xP(X = x)

=
n
(
2n
n

)
22n

+
2

22n

2n∑
x=n+1

x

(
2n

x

)

=
n
(
2n
n

)
22n

+ 2−2n
2n∑
r=0

r

(
2n

r

)

=
n
(
2n
n

)
22n

+ 2−2n(2n)22n−1

= n+
n
(
2n
n

)
22n

= n

(
1 +

1

22n

(
2n

n

))
as desired.

3. First, we have that
1

22n

(
2n

n

)
> 0

for all positive integers n.

Taking the ratio of two consecutive terms, we have

1
22n

(
2n
n

)
1

22(n+1)

(
2(n+1)
n+1

) =
22n+2 (2n)!

n!n!

22n (2n+2)!
(n+1)!(n+1)!

= 4 · (n+ 1)2

(2n+ 2)(2n+ 1)
.

We have that the following are equivalent:

1

22n

(
2n

n

)
>

1

22(n+1)

(
2(n+ 1)

n+ 1

)
1

22n

(
2n
n

)
1

22(n+1)

(
2(n+1)
n+1

) > 1

4(n+ 1)2

(2n+ 2)(2n+ 1)
> 1

4n2 + 8n+ 4 > 4n2 + 6n+ 2

2n+ 2 > 0

and this obviously true for all positive integers n.

This means that 1
22n

(
2n
n

)
decreases as n increases.

4. The winning is given by X − n, and hence the expected winnings per pound is 1
22n

(
2n
n

)
. This is

maximised when n = 1 which gives a value of 1
2 .
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2024.3 Question 12

1. For 1 ≤ r ≤
√
2, the diagram looks as follows.

x

y

1

1

O

r

The angle between the (shallower) radius which just intersects the square and x axis is given by
arccos 1

r , and so is the one steeper and the y-axis.

Hence, the cumulative distribution function is given by

P(R ≤ r) =
shaded area

12

= shaded area

=
1

2
· r2 ·

(
π

2
− 2 arccos

1

r

)
+ 2 · 1

2
· 1 ·

√
r2 − 1

=
√
r2 − 1 +

πr2

4
− r2 arccos

1

r
,

as desired.

For 0 ≤ r ≤ 1, the diagram is as follows.
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x

y

1

1

O

r

Hence,

P(R ≤ r) = shaded area =
πr2

4
.

Hence, the cumulative distribution function is given by

P(R ≤ r) =


0, r < 0,
πr2

4 , 0 ≤ r < 1,√
r2 − 1 + πr2

4 − r2 arccos 1
r , 1 ≤ r < 2,

1, 2 ≤ r.

2. Let f be the probability density function of R. Hence, by differentiating, for 0 ≤ r ≤
√
2, it is

given by

f(r) =
d

dr
P(R ≤ r)

=


πr
2 , 0 ≤ r ≤ 1,

r√
r2−1

+ πr
2 − 2r arccos 1

r − 1√
1−( 1

r )
2
, 1 ≤ r ≤

√
2,

=

{
πr
2 , 0 ≤ r ≤ 1,
πr
2 − 2r arccos 1

r , 1 ≤ r ≤
√
2.
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Hence, the expectation is given by

E(R) =

∫ 1

0

r · πr
2

dr +

∫ √
2

1

r ·
[
πr

2
− 2r arccos

1

r

]
dr

=

∫ √
2

0

πr2

2
dr − 2

∫ √
2

1

r2 arccos
1

r
dr

=

[
πr3

6

]√2

0

− 2

3

∫ √
2

1

arccos
1

r
dr3

=
2
√
2π

6
− 2

3

[
arccos

1

r
· r3
]√2

1

+
2

3

∫ √
2

1

r3 d arccos
1

r

=

√
2π

3
− 2

3
· arccos 1√

2
· 2
√
2 +

2

3
· arccos 1 · 1 + 2

3
·
∫ √

2

1

r3 ·
(
− 1

r2

)
·

− 1√
1−

(
1
r

)2
 dr

=

√
2π

3
− 2

3
· π
4
· 2
√
2 +

2

3

∫ √
2

1

r · r√
r2 − 1

dr

=

√
2π

3
−

√
2π

3
+

2

3

∫ √
2

1

r2√
r2 − 1

dr

=
2

3

∫ √
2

1

r2√
r2 − 1

dr,

as desired.

3. To integrate this, we let r = cosh t, and hence dr
dt = sinh t. When r = 1, t = 0. When r =

√
2,

t = ln

(√
2 +

√√
2
2 − 1

)
= ln(

√
2 + 1).

Hence,

E(R) =
2

3

∫ √
2

1

r2√
r2 − 1

dr

=
2

3

∫ ln(
√
2+1)

0

cosh2 t

sinh t
· sinh tdt

=
2

3

∫ ln(
√
2+1)

0

cosh2 tdt

=
2

3

∫ ln(
√
2+1)

0

e2t + e−2t + 2

4
dt

=
1

2

[
e2t − e−2t

]ln(√2+1)

0
+

1

3
[t]

ln(
√
2+1)

0

=
1

12
·
[
(
√
2 + 1)2 − (

√
2 + 1)−2 − e2·0 + e−2·0

]
+

1

3
·
(
ln(

√
2 + 1)− 0

)
=

1

2

[
2 + 1 + 2

√
2− (

√
2− 1)2

]
+

1

3
ln(

√
2 + 1)

=
1

2
· 4
√
2 +

1

3
ln(

√
2 + 1)

=
1

3

(√
2 + ln

(√
2 + 1

))
,

as desired.
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