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2019.3 Question 1

1. When k =1,
t=—r—-yy=x—y
Hence,
f=—-2—y
=-i—(z—y)
=—T—z+y

=—i—x+(—z—1)

= -2 — 2z,

and this gives
Z+22+2x =0.

The auxiliary equation to this differential equation is
N +20+2=0,

which solves to
A=—141.

The general solution for z is hence

x(t) = exp(—t) (Asint + Bcost) .

This means

z(t) = —exp(—t) (Asint + Bcost) + exp(—t) (Acost — Bsint)

= —z(t) + exp(—t) (Acost — Bsint),

and hence

y(t) = —exp(—t) (Acost — Bsint) = exp(—t) (Bsint — Acost).

When t =0, v = 2(0) = B=1, y = y(0) = —A = 0. Hence,

x(t) = exp(—t) cost, y(t) = exp(—t)sint.

The graph of y against ¢ looks as follows:

y = exp(—t)sint S

0] - 3m 27

y :texp(—t)
y = —exp(—1)
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y is greatest at the first stationary point of y, as shown in the graph. Note that
y=x —y=-exp(—t) (cost —sint),

and hence
y=0 <= cost =sint <= tant =1,

and the smallest positive solution to this is = 7. The coordinate of the point is hence

™ V2 ™ V2
= (o0 () Fow () 7).

Similarly, the graph of x against ¢ looks as follows:

X

x =exp(—t)cost| \

~~. x = exp(—t)
t

]
|

@)
ﬁg
g

2 x = —exp(—t)

vl
\
\
\
ol

-1

x is smallest at the first stationary point of x, as shown in the graph. Note that
& =—x—y=—exp(—t) (cost +sint),

and hence
=0 <= cost = —sint < tant = —1,

and the smallest positive solution to this is ¢t = ?jf. The coordinate of the point is hence

@;w::(—exp(—%f)-ifﬁmp(—%f)-if).

Without the exp(—t) factor, the z-y graph will simply be a circle, and with this factor, it will be
a spiral with exponentially decreasing radius. This is the polar curve r = exp(—6). Hence, the z-y
graph looks as follows.

Y
(o0 (=5) e (-5) %)
exp(=5) .-~ Tl
(—exp(-%) Loexn (-2) - 2) ¢ o )
exp (—7) | 1
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2. Since £ = —x, we must have z(t) = Aexp(—t), and since 2(0) = 1, we have A = 1 and z(t) =
exp(—t).
We have
y = exp(=t) —y,
and hence
J+y = exp(—t).

Multiplying both sides by exp(t), we have

ey +ely=1,
and hence
dyet
= 1’
dt
which gives
ye! =t + B,

and hence
y = exp(—t)(t + B).

Since y = 0 when ¢t = 0, we must have B = 0, and hence

y = texp(—t).
Note that d
d—zz = exp(—t) — texp(—t),
and hence % = 0 when ¢ = 1, which is when
(z,y) = (ehe™h).
Note that
dz exp(—1)
T — _exp(—
dy p )
and hence ‘é—f = 0 when ¢ = 0, which is when
(z,y) = (1,0),

and the tangent to the curve at this point will be vertical.

Hence, the graph will look as follows:

Y

(e he)
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2019.3 Question 2
1. Let y = 0, and we have
f(x+0) = f(z) = f()£(0),
so either f(z) =0 or f(0) =1 for all .

Assume, B.W.O.C., that f(0) # 1, then we must have f(z) = 0 for all x, which means f'(z) =0,
contradicting with f'(0) =k # 0.

Hence, f(0) = 1.

By definition of the derivative, we have

. fle+h) - fz)
() —
fiw) = Jim, h
o T@)fh) (@)
h—0 h
(h)—1
= 1
(z) lim P
and letting = = 0, we also have
f(h) — . f(h)—1
— ) — _
k= 7(0) = £(0) Jim T8 = tim 7
and hence
f(x) =kf(x)
as desired.
This differential equation solves to
f(x) = Ae*?,
and with the condition f(0) = 1, we have A =1, and hence
fla) = et
for all x.
2. Let y = 0, and we have
9(z) +9(0)

g(x+0) =g(z) = T+ g(2)g(0)’

This means that
g(@) + g(2)*9(0) = g(z) + g(0),
which gives
9(0) [9(x)* — 1] = 0.

Since |g(z)| < 1 for all , we must have g(x)? — 1 < 0, and hence g(0) = 0.
By the definition of the derivative,

gz +h) —g(x)

12 T
o) = o 4
x)+g(h
— Tg+(g)<x>g;<}3> — ()
= lim
h—0 h
_ iy 9@ +9(h) — g(x) — g(2)*g(R)
= lim
h—0 h(1+ g(z)g(h))

_ i 9 (1 9(0]
h—0 h(1 + g(x)g(h))

B . g(h)
= (1= 9@ iy o Oy
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Considering the limit, we have

lim g(h) i IW)/D
h=0 h(1+ g(x)g(h))  h—01+ g(x)g(h)
__ limuso[g(h)/h]
limy, o [1 + g(z)g(h)]
_ im0 [g(h)/h]
1
= lim g(h)

h—0 h '

and hence

Let x = 0, and we have

hence giving the differential equation
g'(@) =k [l —g(x)’].

This rearranges to give

dg(z)
1—g(x)? e
and hence
1 1
dg(z) = 2k dx,

_l’_
L+g(z)  1-g(x)
which gives
In|1 4 g(x)| —In|1 — g(x)| = 2kx + C.

Let x = 0, we have ¢g(0) = 0, and hence C = 0, and hence

1+ g(x)

() = exp(2kx),

and hence
1+ g(z) = exp(2kz) — exp(2kz)g(z),

which gives
exp(2kz) —1  exp(kx) — exp(—kx)
exp(2kz) +1  exp(kz) + exp(—kx)

g9(x) = = tanh(kz).
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2019.3 Question 3

1. Since L; is a line of invariant points, for each point (z,y) € L, we have

(L 006)=6)

and hence
ar +by =z, cx+dy =vy.
Hence,
(1 —a)r =by, (1 —d)y=cnr,
and hence

(1 —-a)z(1—d)y = bycez,
which simplifies to
[(a=1)(d—=1) = beJzy = 0.
If the line L; is the line z = 0, then by = 0 for all y and dy = y for all y, giving d =1 and b = 0.
Hence, (a —1)(d — 1) — bc = 0.

Similarly, if the line L; is the line y = 0, then ax = x for all x and cx = 0 for all y, giving a = 1
and ¢ = 0. Hence, (a —1)(d — 1) — bc = 0.

Otherwise, there must be a point (z,y) € L; such that xy # 0, which means (a—1)(d—1) —bc = 0.
Hence, in all cases, we must have (a — 1)(d — 1) = be as desired.
If Ly does not pass through the origin, then y = max + k for some k # 0, or x = k for some k # 0.
In the first case, we have
ax + b(mx + k) = z,

and hence

(a+bm—1Dz+bk=0
for all x, meaning a + bm — 1 =0 and bk = 0.

Similarly,
cx +d(mx + k) = mx + k,

and hence
(c+dm—m)x+(d—1)k=0

for all , meaning ¢+ dm —m =0 and (d — 1)k = 0.

Since k # 0, bk = 0 and (d — 1)k = 0 implies b = 0 and d = 1 respectively. Putting those back into
the first corresponding equations, this solves to a = 1 and ¢ = 0, which means

A (U)o

In the second case where x = k for some k # 0, we have
ak + by =k,
and hence
by+(a—1k=0
for all y, meaning b = 0 and (a — 1)k = 0.

Similarly,
ck+dy =y,

and hence
(d=1y+ck=0

for all y, meaning d —1 =0 and ck = 0.
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Since k # 0, (a — 1)k = 0 and ck = 0 implies a = 1 and ¢ = 0 respectively. Hence,

1 0
A (b))

Therefore, L1 not passing through the origin must imply that A is precisely the 2 by 2 identity
matrix.

2. If (z,y) is an invariant point, we have
(a—1z+by=0,cx+(d—1)y=0.
If b=0, then (¢ — 1)(d — 1) = bc = 0, and hence a =1 or d = 1.
In the case where a = 1, the first equation is trivially true, and the second equation simplifies to
cx+(d—1)y =0,

and hence the line L : cx + (d — 1)y = 0 is a line of invariant points.

In the case where d = 1, the original equation simplifies to
(a—1)z=0,cx =0,

and hence the line L : x = 0 is a line of invariant points.

If b # 0, we want to show that all points on the line L : (a — 1)z + by = 0 satisfy the second
equation. We multiply (d — 1) on both sides of the equation, and hence

(a—1)(d—1)x+bd—1)y =0,

which is
bex +b(d — 1)y = 0.

Since b # 0, we divide b on both sides, giving
cx+ (d—1)y =0,

which is precisely the second equation. Hence, L : (a — 1)z + by = 0 is a line of invariant points
under this case.

3. We have Ly : y = mx + k, k # 0, we therefore have
a b x _ X
c d)\mx+k) \mX+k)’

ax +b(mx + k) = X, cx +d(mz + k) =mX + k.

and hence

Putting the first equation into the second one gives us
cx + d(mx + k) = m(ax + b(mx + k)) + k,

which simplifies to
(c+dm —am — bm?)z + (dk — mbk — k) = 0,

which is
(bm? + (a — d)m — ¢)x + (mb—d + 1)k = 0.

Since this is true for all  and k # 0, we must have

bm? + (a—dym —c=0,bm —d+1=0.

If b =0, then
(a—dm=c,d—1=0,
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and hence d =1, (a — 1)m = ¢, and
(a—1)(d—1)=0,bc =0,

which gives
(a—1)(d—-1) = be.

If b # 0, the second of those equations solve to

and putting this back into the first equation, we have

(d—1)2 n (a—d)(d—-1)

b b

—c=0,
and multiplying both sides by b gives
(d—1)2+(a—d)(d—1) = b,

and hence
(a—1)(d—-1) = be

Therefore, in both cases, we have (a — 1)(d — 1) = be, as desired.
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2019.3 Question 4

1. We look at different cases depending on the value of n.

e When n =1, P(z) = x — ay has root ay, and thus is reflective for all a; € R.

e When n =2, P(x) = 22 — a;x + a has root ay, as, and hence by Vieta’s Theorem,
a1a2 = az,a1 + a2 = ay.
This means as = 0 and a; can take any real value, and hence
P(z) = 2° — a1

is reflective for a; € R.

e When n =3, P(z) = 23 — a122 + asx — az has root a1, as, as, and hence by Vieta’s Theorem,

a1a2a3 = ag,
ajaz + ajas + aza3 = as,

ay + a2+ a3z =aj.

The final equation implies that as + as = 0, and hence with the second equation gives that

asasz = ag, which means either as = a3 =0, or ao = —1,a3 = 1.
When as = a3 = 0, a1 can take any real value, and when as = —1,a3 = 1, we must have
a; = —1.

So the degree 3 reflective polynomials are
P(z) = 23 — a2°

for all a; € R, and
Px)=2*+2"—2—1.

2. By Vieta’s Theorem, we have

and hence

Squaring both sides gives

1=2
n n—1 n
_ 2
= E a; +2 E E a;a;
=2 =2 j=i+1

By Vieta’s Theorem, we also have
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and notice that

n—1 n
2a2 = 22 Z a;a;

i=1 j=i+1
n n—1 n
=2 E a1a; + 2 E E a;a;
j=2 i=2 j=i+1

n n

= 2a12ai + (—Za?)

i=2 i=2

n
=2a;-0— Z a?
i=2

n

.
i=2

as desired.

For the final part, assume B.W.O.C. that n > 3. By rearrangement, we have
n
a§—|—2a2—|—1:1—2a?,
i=3

and the left-hand side is (az + 1)? which is always non-negative. Hence,
n
Za? <L
i=3

Since a; are all integers, precisely one of the a;s for 3 < i < nis £1, and all the rest are 0. Since
an # 0, we conclude that a, = +1, and a3 =--- = a,_1 = 0.

But notice from Vieta’s Theorem that

n
an:Hai =0
i=1

since ag must be 0, which leads to a contradiction.

Hence, we must have n < 3.
3. The reflective polynomials for n < 3 are

e P(x)=x—a for a; €Z,

P(z) = 2% — ayz for a; € Z,

P(z) = 2® — a12? for ay € Z, and
Plx)=a3+2% -2 — 1.

For n > 3, we must have a,, = 0, and hence

P(z)=2" —a1z" ' aga" 2 — - 4+ (=1)"a, 12
=z (x”fl — a2t agr" 3 — o+ (—1)"71an_1) .
Let
Q(l‘) _ xn—l _ ann—Q + ann—?) e (_1)n—1an71
If P(x) is reflective, then the roots to P(z) are a1, as, ..., a,—1,0, and hence the roots to Q(z) are
a1,as,...,a,_1, which shows that Q(z) is reflective as well.

This means that an integer-coefficient reflective polynomial with degree n > 3 must be x multiplied
by another integer-coefficient reflective polynomial, and repeating this process, we can conclude it
must be some power of x multiplied by some integer-coefficient reflective polynomial with degree
n <3.

Hence, all integer-coefficient reflective polynomials are
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e Plx)=2a"(x—ay) foray € Z, 7 € Z, r > 0, and
o Pla)=a"(23+2?>—2x—1)=2*(x+1)*(x—1)forr € Z, r > 0.
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2019.3 Question 5
1. By quotient rule,

1

2?24+p—z-5-20- o

/
xTr) =
(@) T
V2 +p— 2’
. \x2+p
B x2+0p

p
(22 +p)/22 +p

This gives
1
0< fl(z) < —,
VP
with the equal sign taking if and only if z = 0.
lim, o f(x) =1, so y =1 is a horizontal asymptote to the function.

Hence, the graph looks as follows:

Ccx

2. Since y = \/727 = cf(z), we have
@2 +p

dy cp
Pl = L,
(vVa+7)
and hence c
dy = b dx

The integral can therefore be simplified as

1:/ dy

CEENCET

:/ 1 ) cp da
(b2_ c2x2) cQ_ﬁ ( x2—|—p)3

z2+p z2+p
_ cpdx
B / (b2(22 + p) — c2a2) /(22 + p) — 222

_ / cpdx
R e
V/pdw

= b2p + (b2 — )22’

Let p =1, and we have

I—/ dx
- b2 + (b2 _ c2)x2

as desired.
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Hence,

I—/ dx
) b2+ (b2 — c?)a?

1 dz
_b2—62/( b )2+x2

Vb2—c2
1 Vb2 —¢c? Vb2 —c2x
= . arctan —— + C
b2 — 2 b b
_ 1 b2 — c2x c
= bm arctan b + C.
Let b=+/3 and ¢ = ﬁ, and hence
1 V3 —2x 1 T
[]=————arctan ——— + C = — arctan — + C.
V3v3 =2 V3 V3 V3

When y =1, \/x,f% =1, and hence 2% + 1 = 222, 22 = 1, giving = 1.
Wheny—>\/§:b,x—>oo.

Hence,
/”dy _ 1 [amtanxr _L(romyo
1 B-y)V2-y2 V3 V3l V3\2 6 3v3
Consider letting z = % in the integral, and we have dx = —y% dy = —22dy, and wheny =1, x = 1,

and when y = /2, z = % Hence,

/1 ydy oo

LGPV -1 Jva(3 1), /2 1

\& T
:/1 (3x2()1m

™

Ve

3. Consider the same substitution y = —2£—. We still have
v x2+p

and hence

dy
/ (3y2 —1)/2y2 — 1

_/ ap dz
= 5
(VaZ+0) (3-52 -1),/2- 52 -1

z?+p ip

_ / apdx
(3a222 — (22 + p)) /20222 — (22 + p)

_ / apdx '
((3a2 — 1)a? —p) /(2> = 1)22 —p
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1

Consider letting a = and p = —1, and we have

S

| @

(3y?2 —1)y/2y%2 — 1
—dzx

- / V2 (322 +1)

B —V/2dz

) 2?42

1 x
= V2. —arctan — + C
V2 V2

T
= —arctan — + C.

V2

x 1 T

Wheny:%,wehave%-m:%,andx—ﬂm. Whenyzl,wehaveﬁ-ﬁzl,and
z =2 Hence,

[ arm
% (3y2 — 1) 2y — 1

e ]
= — |arctan —

V2

o0
T
arctan —

V2]3

oo

1

I
I

N R CTE

Eason Shao Page 277 of 430



STEP Project

Year 2019 Paper 3

2019.3 Question 6

Notice that the original equation
22" —az* —a*z4+aat —1r2 =0

can be simplified to

(z—a)(z"—a") = r2,

and the left-hand side satisfies

2
(z—a)(z"—a")=(z—a)(z—a)" =]z —a|",
which means the original equation is
2
‘Z - a| = T27
and hence
|z —al =7
This is a circle centred at a with radius r.
1. Since w = %, we have z = % Hence,
11 1
—— —a— — —a* +aa* =1?
w w* w*
1 —wa—w*a* + aad*ww* = riww*
(r? — aa")ww* + wa + w*a* =1
N a a* N 1
ww" + 5 w + 3 W= —
re —aa* re —aa* T aa*
*
n a* n a* 1 n aa*
w+—m | wt+t—m ) =
r2 — aa* r2 — aa* r?—aa*  (r2 — aa*)?
2
a* T2
w — =
aa* —r? (r2 — aa*)?
a* r
w — =
aa* — 12 |r2 — aa*|’
. . . * .
so w is on a circle C’ with centre —2— and radius ———.
aa*—r [r2—aa*|

If C and C’ are the same circle, we have

*

a r

T —r2" T |r2 — aa*|’

2

The second equation gives |72 — aa*| = 1, which means 2 — aa* = +1.

r? —aa* = +1

r? — \a|2 ==+1

2
(|CL|2 - TQ) = 17

as desired.

*

When 2 —aa* =1, a = —a

. . . . 2 . .
, and hence a is pure imaginary. Since r? = 1 + |a|” in this case,

r > |a|, so the circle must contain the origin. The diagrams are as below, with the case Im(a) > 0

on the left, Im(a) = 0 in the middle, and Im(a) < 0 on the right:
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Im(z) Im(2)

Im(z)

/a\ Re(z)
o Re(2) QJ
2 _

When 72 — aa* = —1, a = a*, and hence a is real. Since r2 = —1 + |a|” in this case, r < |a|, so the
circle cannot contain the origin, and |a| > 1. The diagrams are as below, with the case Re(a) > 1
on the left, and Re(a) < —1 on the right:

/;\g
=
o)
O

Im(z) Im(z)

2. In the case where w = Z%, we have z = wl , and hence similar to the previous one,
. a . a* 1
ww + 5 w 3 w=—-
re —aa* re —aa* re —aa*
*
n a " a 1 aax
w =
r2 — aa* r2 — aa* r2—aa*  (r2 — qa*)?
2
a r2
w — =
aa* —r? (r2 — aa*)?
a r
w — =
aa* —r2|  |r2 —aa*|’
so w is on a circle C’ with centre —%— and radius ———.
aa*—r [r2—aa*|
If they are the same circle, we have
a r
a= r= .
aa* —r?’ r2 — aa*
We still have r2 — aa* = +1.
When r2 — aa* = 1, we have a = —a, and a = 0.

When 7?2 — aa* = —1, we have a = a, and a can be any complex number satisfying |a| = v/r2 + 1.

It is not the case that a is either real or pure imaginary.
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2019.3 Question 7
1. When a = b,
PP - ) = 2 - )
YL 20 S Y
(2 +y* —a®)(@® —y*) =0
(@ +y? —a®)(z +y)(z —y) =0,

so the Devil’s Curve in this case consists of the line  + y = 0, the line x — y = 0, and the circle
2 2 2
r°+ Yy =a“.

The curve is shown as follows.

2. Whena:2andb=\/5,
v (y? —5) = 2*(a® — 4).

(a) Rearrangement gives us
(2%)? = da® — y*(y* = 5) =0,
and considering the discriminant, we have
(—4)* +4y*(y* = 5) > 0,
ie.
(42— 1) (5~ 4) > 0.
This gives y?> < 1 or y? > 4, and in the case where y > 0, this must give 0 <y < 1 or y > 2,
as desired.

(b) When the curve is very close to the origin, we must have x4, y* < 22, y2, and hence 422 ~ 5y2,

which means y ~ %x

When the curve is very far from the origin, we must have z#, y* > 22,92, and hence z* ~ y*,
which means y ~ .
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(c¢) Using implicit differentiation, we have
v (y* —5) = 2*(a® — 4)
d
(493 — 1oy)£ = 42% — 8z

d
(2% — 5)y—>

= 22 (x? — 2).

When g—z = 0, the tangent to the curve is parallel to the z-axis, and hence
2z(z% — 2) =0,

giving £ = 0 or z = /2.
For z = 0, 4%(y?> — 5) = 0, and therefore y = 0 or y = /5. The case where y = 0 does not
necessarily give that % =0, but the case where y = v/5 does.

For z = v/2, y?(y?> —5) = —4, y = 2 or y = 1. Both cases give (% =0.
So the tangent to the curve is parallel to the z-axis at points

(0, \/5) : (\/5 1) : (\/5 2) .

We must have d

22 — 5)y = 2a(z? — 2) S

(2y” =)y = 2x(a” - 2) Q'
and when g—z = 0, the tangent to the curve is parallel to the y-axis.
This gives (2% — 5)y = 0, and hence y = 0 or y = \/g

For y =0, x = 0 or x = 2. The case x = 0 does not necessarily give g—‘;’ = 0, but the case
where = = 2 does.

For y = \/g’ 22 (2? —4) = —%, and hence
4ot — 1622 +25 = 4(2® — 2)* +9 =0,

which is not possible.
Hence, the tangent to the curve is parallel to the y-axis only at (2,0).

Therefore, from the analysis in the previous parts, the curve looks as follows for x > 0 and y > 0:

Y
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3. All z terms in the curve is in 22, so the graph is symmetric in the y-axis since 2 = (—x)2. Similarly,
the graph is symmetric in the z-axis as well. Hence, the complete graph looks as follows.

Y
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2019.3 Question 8

1. W.L.O.G. let the origin be the centre of the rectangle ABCD (and let ABCD lie on the z-y
plane). We adjust the scale of the axis, and we let V' (0,0, 1) and A(—pu, —v,0), we have B(u, —v,0),
C(p,v,0) and D(—p,v,0). Let p,v > 0.

Let M be the midpoint of AB and N be the midpoint of BC. We must have M (0, —v,0) and

N(1,0,0).
—
The angle between the face AV B and the base ABCD must be the angle between W and MV.
Hence, N
MO - MV
COS QU = ———.
Note that
0
MB: v 7]\*47:v—m: v,
0 1
and hence
v? v

Cosx =

l/~\/1/2+1:\/1/2+17

which gives

cos® av? + cos’ a = 1/2,

and hence
sin? awv? = cos? Q,
which gives
v = cot a.
Similarly,
= cot f3.
A vector perpendicular to AV B can be
—p I
—
VA x ﬁ =|-v|x|-v
-1 -1
i j k
=|-u —-v -1
n o —v —1
0
2uv
0
= —2cot 8
2 cot a cot 3.
2cot 8 0
= —— —sina |,
sin
cos o
and so
0
—sina
cos o

is a unit vector perpendicular to AV B.
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Similarly,

and hence

is a unit vector perpendicular to BV C.

VE x

7 (‘L
-1

J
=|lup —v -1

I

x| v

-1
k

nwovo -1

2v
= 0

2uv

2cot a

= 0

2 cot accot 3
sin 3

0],

cos 3

B 2cot «

sin 3

sin 3
0
cos 3

The acute angle between AV B and BV C, 6, satisfies that

as desired.

2. Notice that

and hence

which means

and hence

as desired.

cosf =

COos «x

sin 3
—sina | - 0 = cos a cos 3,
cos 3
BV -BO

COSPp = —=T————
5v] ||

I —p
124 12
1 0

B \/M2+V2+1\/M2+V2
B IJ’2+V2
IR
1
np=+v1—co?p=4/—0
sin ¢ cos e

cot o = /2 + 12,

cot? o = p? + 1?2 = cot? a4 cot? S,
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Notice that

2 42
w2441

_ cot? o + cot? B
~ cot?a+cot? B+ 1

cos? acsin? B + cos? Bsin’ «

cos® p =

cos? asin® B + cos? Bsin? o + sin? Bsin® a
B cos? a1 — cos? B) + cos? B(1 — cos? a)
(cos? a + sin? @) (cos? B + sin? ) — cos? a cos? f3

cos? o + cos? 8 — 2 cos? acos? 3

1 — cos? acos? 3
cos? o + cos? 3 — 2cos? 0
1— cos26

Since (cos a — cos 3)? = cos? a + cos? 3 — 2cos § > 0, we have cos? a + cos? 3 > 2cos 6, and hence

cos? o + cos? B — 2 cos? 0 S 2cosf —2cos? 0
1— cos26 - 1—cos?6

cos? p =

Notice that

2cosf —2cos? 6
1—cos?26
2cosf(1 — cosb)
(1 —cos0)(1+ cosb)
2cosf
1+ cosé

cos? >

= 0
1—1—(:05000S

> cos 6

1+1
= cosf

> cos? 6,

since 6 is acute, 0 < cosf < 1.

This means cos? ¢ > cos? §, and since 6, ¢ are acute, this must mean that ¢ < 6, since cos @, cos
are both positive, and cosp > cosf.
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2019.3 Question 11

1. Let X be the number of customers arriving at builders’ merchants on a day, and we have X ~ Po(}).
This means

)\I
PX=2x)= ]
forz=0,1,....
Let Y be the number of customers taking the sand on a day. Then we have (Y | X = x) ~ B(z,p),
and hence

P =y | X =)= (D)1

Hence, we have

P(Y=y) =) P(Y=yX=2)
z=0
=Y PV =y|X =2)P(X =)
=0

Y P(Y=y|X=2)P(X =x)

=y
z\ 1)y A
<y)p (1-p) o]

zlp? (1 — p)* A\
yl(z — y)i(1 — p)vera!

R o~ (1— )"\
Yl -ppret ;, (z —y)!

o e
—yl(1— p)ver mz:% !

_ PN =)

T oyler |
yet — X!

_ ®NY a-p
oyler ¢
(pA)Y

ylepr’

E

xT

Y

I
it

which is precisely the probability mass function of Po(pA), as desired.
2. Let Z be the amount of sand remaining at the end of a day, and hence
Z=S01-kY.
Hence, the expectation of Z is given by

E(Z)=SE[1-k)"]
=S (1-k)YP(Y =y)
y=0
S X (pA(1 = k)Y
TR pltela)
y=0

S Ak
epi/\ep( )
S

epkX”
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Let Z’ be the amount of sand taken, and hence
=S—-2,

which means
E(Z)=S-E(Z)=S(1—-e "),

precisely as desired.

3. Given that Z = z, the assistant will take kz of the remaining sand, and the probability of the
assistant taking the golden grain event (denoted as G) is

kz

P(G|Z==z2)= <

Using Z = S(1 — k)Y, we have
P(G|Y =y)=k(1—-k)Y

P(G)=> P(GY =y)
y=0
=Y P(G|Y =y)P(Y =y)
=0
Zk(l—k;)y. gﬁi‘gi
ep)‘ —

iepm—k)
ePA

k
ePkX’

In the case where k = 0, no sand is taken, and hence the probability is 0.

In the case where k — 1, P(G) = e~P*, which is the probability that Y = 0. This is precisely when
no customer takes any sand (since if any took the sand they must have taken the gold grain), and
as k — 1 the merchants’ assistant is guaranteed to take the gold provided it is still existent in the
final pile.

In the case where p\ > 1, we differentiate the probability with respect to k, which gives

dke—Pk>

=(1- Pk,
i (1 —pkXe

e PkA is always positive. In the case where k < p%\, 1 —pkA > 0, and when k£ > p%\, 1 —pkX <O0.

Hence, precisely when k = me we will have P(G) taking a maximum, and since pA > 1, this k& will
satisfy 0 < k < 1 which is within the range.

Hence, the value of k that maximises P(G) is

k=—.
PA
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2019.3 Question 12

For each integer between 1 to n inclusive, they are either in a subset of S, an element of T', or not. For
each integer there are 2 choices, and there are n integers, this means that

|T| = 2n7
as desired.

1. Since there is an equal number of sets B € T for 1 € B and 1 ¢ B, this means
1

2. For each of the integer 1 <t < n, t ¢ A; N Ay if and only if they cannot be in both of A; and As,
and hence

P@¢A40Ag_1<2)%_4

and Ay N Ay = @ if and only if for all 1 < ¢ < n, that t ¢ A1 N As. All these events are independent,

and hence "
P(AiNAy=9)= <i) .

By similar reasoning,

7 n
P(AlﬂAgﬂAg,:@): (8) ,

et == [1- (3] = (12 )

3. A; C Ay if and only if for any 1 <t < n, we have t € A; = t € As. For this to happen, either
t ¢ Ay (in which case we do not worry about whether ¢ is in Ay or not), or t € A; and t € A,.
This means

and

Pite 44 = teAz)zz,

and hence

- (2

Forany 1 <t<n, A; C Ay C---C A, means we havet € A] — t€ Ay — -+ = t € A,,.
This happens if and only if ¢ € A; gives t € A; for all j > 4, and this is true if and only if there
exists some 0 < k < m, such that for 1 <i <k, t ¢ A, and for k < j <m, t € Aj.

There are precisely m + 1 choices for such k, and this means

m+1

Plled = tedy = - = tedn) = —0,

and hence

which gives
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