STEP Project Year 2019

Year 2019

2019.3 Pap	er 3
2019.3.1	Question 1
2019.3.2	Question 2
2019.3.3	S Question 3
2019.3.4	Question 4
2019.3.5	Question 5
2019.3.6	Question 6
2019.3.7	V Question 7
2019.3.8	Question 8
2019.3.1	1 Question 11
2019.3.1	2 Question 12

Eason Shao Page 262 of 430

2019 Paper 3

2019.3.1	Question 1						 												264
2019.3.2	Question 2						 												267
2019.3.3	Question 3						 												269
2019.3.4	Question 4						 												272
2019.3.5	Question 5						 												275
2019.3.6	Question 6						 												278
2019.3.7	Question 7						 												280
2019.3.8	Question 8						 												283
2019.3.11	Question 11						 												286
2019.3.12	Question 12						 												288

Eason Shao Page 263 of 430

2019.3 Question 1

1. When k = 1,

$$\dot{x} = -x - y, \dot{y} = x - y.$$

Hence,

$$\begin{split} \ddot{x} &= -\dot{x} - \dot{y} \\ &= -\dot{x} - (x - y) \\ &= -\dot{x} - x + y \\ &= -\dot{x} - x + (-x - \dot{x}) \\ &= -2\dot{x} - 2x, \end{split}$$

and this gives

$$\ddot{x} + 2\dot{x} + 2x = 0.$$

The auxiliary equation to this differential equation is

$$\lambda^2 + 2\lambda + 2 = 0,$$

which solves to

$$\lambda = -1 \pm i$$
.

The general solution for x is hence

$$x(t) = \exp(-t) (A \sin t + B \cos t).$$

This means

$$\dot{x}(t) = -\exp(-t) (A \sin t + B \cos t) + \exp(-t) (A \cos t - B \sin t)$$

= $-x(t) + \exp(-t) (A \cos t - B \sin t)$,

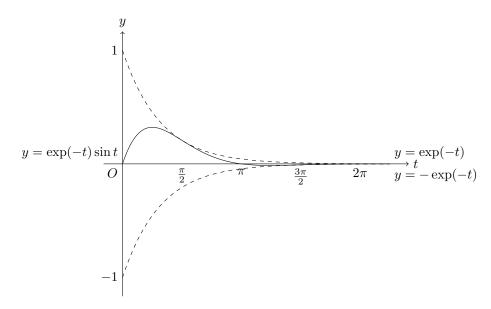
and hence

$$y(t) = -\exp(-t) \left(A\cos t - B\sin t \right) = \exp(-t) \left(B\sin t - A\cos t \right).$$

When
$$t = 0$$
, $x = x(0) = B = 1$, $y = y(0) = -A = 0$. Hence,

$$x(t) = \exp(-t)\cos t, y(t) = \exp(-t)\sin t.$$

The graph of y against t looks as follows:



Eason Shao Page 264 of 430

y is greatest at the first stationary point of y, as shown in the graph. Note that

$$\dot{y} = x - y = \exp(-t)(\cos t - \sin t),$$

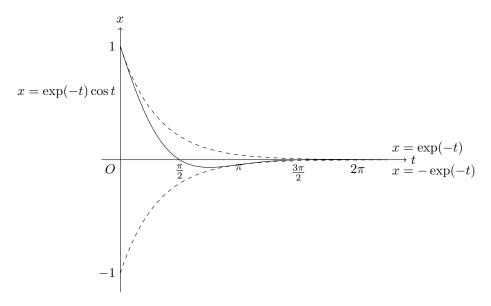
and hence

$$\dot{y} = 0 \iff \cos t = \sin t \iff \tan t = 1,$$

and the smallest positive solution to this is $t = \frac{\pi}{4}$. The coordinate of the point is hence

$$(x,y) = \left(\exp\left(-\frac{\pi}{4}\right) \cdot \frac{\sqrt{2}}{2}, \exp\left(-\frac{\pi}{4}\right) \cdot \frac{\sqrt{2}}{2}\right).$$

Similarly, the graph of x against t looks as follows:



x is smallest at the first stationary point of x, as shown in the graph. Note that

$$\dot{x} = -x - y = -\exp(-t)\left(\cos t + \sin t\right),\,$$

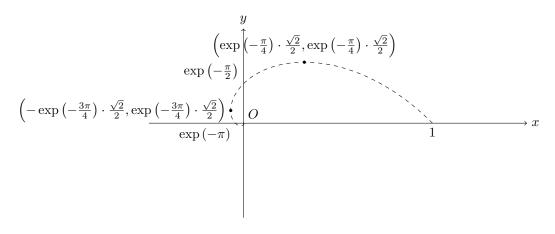
and hence

$$\dot{x} = 0 \iff \cos t = -\sin t \iff \tan t = -1,$$

and the smallest positive solution to this is $t = \frac{3\pi}{4}$. The coordinate of the point is hence

$$(x,y) = \left(-\exp\left(-\frac{3\pi}{4}\right) \cdot \frac{\sqrt{2}}{2}, \exp\left(-\frac{3\pi}{4}\right) \cdot \frac{\sqrt{2}}{2}\right).$$

Without the $\exp(-t)$ factor, the x-y graph will simply be a circle, and with this factor, it will be a spiral with exponentially decreasing radius. This is the polar curve $r = \exp(-\theta)$. Hence, the x-y graph looks as follows.



Eason Shao Page 265 of 430

2. Since $\dot{x} = -x$, we must have $x(t) = A \exp(-t)$, and since x(0) = 1, we have A = 1 and $x(t) = \exp(-t)$.

We have

$$\dot{y} = \exp(-t) - y,$$

and hence

$$\dot{y} + y = \exp(-t).$$

Multiplying both sides by $\exp(t)$, we have

$$e^t \dot{y} + e^t y = 1,$$

and hence

$$\frac{\mathrm{d}ye^t}{\mathrm{d}t} = 1,$$

which gives

$$ye^t = t + B,$$

and hence

$$y = \exp(-t)(t+B).$$

Since y = 0 when t = 0, we must have B = 0, and hence

$$y = t \exp(-t).$$

Note that

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \exp(-t) - t \exp(-t),$$

and hence $\frac{dy}{dt} = 0$ when t = 1, which is when

$$(x,y) = (e^{-1}, e^{-1}).$$

Note that

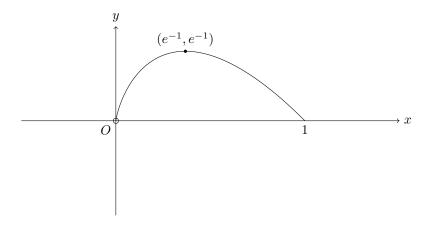
$$\frac{\mathrm{d}x}{\mathrm{d}y} = -\exp(-t),$$

and hence $\frac{dx}{dt} = 0$ when t = 0, which is when

$$(x,y) = (1,0),$$

and the tangent to the curve at this point will be vertical.

Hence, the graph will look as follows:



Eason Shao Page 266 of 430

2019.3 Question 2

1. Let y = 0, and we have

$$f(x+0) = f(x) = f(x)f(0),$$

so either f(x) = 0 or f(0) = 1 for all x.

Assume, B.W.O.C., that $f(0) \neq 1$, then we must have f(x) = 0 for all x, which means f'(x) = 0, contradicting with $f'(0) = k \neq 0$.

Hence, f(0) = 1.

By definition of the derivative, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$= f(x) \lim_{h \to 0} \frac{f(h) - 1}{h},$$

and letting x = 0, we also have

$$k = f'(0) = f(0) \lim_{h \to 0} \frac{f(h) - 1}{h} = \lim_{h \to 0} \frac{f(h) - 1}{h},$$

and hence

$$f'(x) = kf(x)$$

as desired.

This differential equation solves to

$$f(x) = Ae^{kx}$$

and with the condition f(0) = 1, we have A = 1, and hence

$$f(x) = e^{kx}$$

for all x.

2. Let y = 0, and we have

$$g(x+0) = g(x) = \frac{g(x) + g(0)}{1 + g(x)g(0)}$$

This means that

$$g(x) + g(x)^{2}g(0) = g(x) + g(0),$$

which gives

$$g(0) [g(x)^2 - 1] = 0.$$

Since |g(x)| < 1 for all x, we must have $g(x)^2 - 1 < 0$, and hence g(0) = 0. By the definition of the derivative,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x) + g(h)}{1 + g(x)g(h)} - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{g(x) + g(h) - g(x) - g(x)^2 g(h)}{h(1 + g(x)g(h))}$$

$$= \lim_{h \to 0} \frac{g(h) \left[1 - g(x)^2\right]}{h(1 + g(x)g(h))}$$

$$= \left[1 - g(x)^2\right] \lim_{h \to 0} \frac{g(h)}{h(1 + g(x)g(h))}.$$

Eason Shao Page 267 of 430

Considering the limit, we have

$$\begin{split} \lim_{h \to 0} \frac{g(h)}{h(1+g(x)g(h))} &= \lim_{h \to 0} \frac{g(h)/h}{1+g(x)g(h)} \\ &= \frac{\lim_{h \to 0} \left[g(h)/h\right]}{\lim_{h \to 0} \left[1+g(x)g(h)\right]} \\ &= \frac{\lim_{h \to 0} \left[g(h)/h\right]}{1} \\ &= \lim_{h \to 0} \frac{g(h)}{h}, \end{split}$$

and hence

$$g'(x) = [1 - g(x)^2] \lim_{h \to 0} \frac{g(h)}{h}.$$

Let x = 0, and we have

$$k = g'(0) = 1 \cdot \lim_{h \to 0} \frac{g(h)}{h},$$

hence giving the differential equation

$$g'(x) = k \left[1 - g(x)^2 \right].$$

This rearranges to give

$$\frac{\mathrm{d}g(x)}{1 - g(x)^2} = k \,\mathrm{d}x,$$

and hence

$$\left[\frac{1}{1+g(x)} + \frac{1}{1-g(x)}\right]\mathrm{d}g(x) = 2k\,\mathrm{d}x,$$

which gives

$$\ln|1 + g(x)| - \ln|1 - g(x)| = 2kx + C.$$

Let x = 0, we have g(0) = 0, and hence C = 0, and hence

$$\frac{1+g(x)}{1-g(x)} = \exp(2kx),$$

and hence

$$1 + g(x) = \exp(2kx) - \exp(2kx)g(x),$$

which gives

$$g(x) = \frac{\exp(2kx) - 1}{\exp(2kx) + 1} = \frac{\exp(kx) - \exp(-kx)}{\exp(kx) + \exp(-kx)} = \tanh(kx).$$

Eason Shao Page 268 of 430

2019.3 Question 3

1. Since L_1 is a line of invariant points, for each point $(x,y) \in L_1$, we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix},$$

and hence

$$ax + by = x, cx + dy = y.$$

Hence,

$$(1-a)x = by, (1-d)y = cx,$$

and hence

$$(1-a)x(1-d)y = bycx,$$

which simplifies to

$$[(a-1)(d-1) - bc]xy = 0.$$

If the line L_1 is the line x = 0, then by = 0 for all y and dy = y for all y, giving d = 1 and b = 0. Hence, (a-1)(d-1) - bc = 0.

Similarly, if the line L_1 is the line y = 0, then ax = x for all x and cx = 0 for all y, giving a = 1 and c = 0. Hence, (a - 1)(d - 1) - bc = 0.

Otherwise, there must be a point $(x, y) \in L_1$ such that $xy \neq 0$, which means (a-1)(d-1) - bc = 0.

Hence, in all cases, we must have (a-1)(d-1) = bc as desired.

If L_1 does not pass through the origin, then y = mx + k for some $k \neq 0$, or x = k for some $k \neq 0$.

In the first case, we have

$$ax + b(mx + k) = x,$$

and hence

$$(a+bm-1)x+bk=0$$

for all x, meaning a + bm - 1 = 0 and bk = 0.

Similarly,

$$cx + d(mx + k) = mx + k$$

and hence

$$(c + dm - m)x + (d - 1)k = 0$$

for all x, meaning c + dm - m = 0 and (d-1)k = 0.

Since $k \neq 0$, bk = 0 and (d-1)k = 0 implies b = 0 and d = 1 respectively. Putting those back into the first corresponding equations, this solves to a = 1 and c = 0, which means

$$\mathbf{A} = \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} = \mathbf{I}_2.$$

In the second case where x = k for some $k \neq 0$, we have

$$ak + by = k$$
,

and hence

$$by + (a-1)k = 0$$

for all y, meaning b = 0 and (a - 1)k = 0.

Similarly,

$$ck + dy = y$$
,

and hence

$$(d-1)y + ck = 0$$

for all y, meaning d-1=0 and ck=0.

Eason Shao Page 269 of 430

Since $k \neq 0$, (a-1)k = 0 and ck = 0 implies a = 1 and c = 0 respectively. Hence,

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}_2.$$

Therefore, L_1 not passing through the origin must imply that **A** is precisely the 2 by 2 identity matrix.

2. If (x, y) is an invariant point, we have

$$(a-1)x + by = 0, cx + (d-1)y = 0.$$

If b = 0, then (a - 1)(d - 1) = bc = 0, and hence a = 1 or d = 1.

In the case where a = 1, the first equation is trivially true, and the second equation simplifies to

$$cx + (d-1)y = 0,$$

and hence the line L: cx + (d-1)y = 0 is a line of invariant points.

In the case where d=1, the original equation simplifies to

$$(a-1)x = 0, cx = 0,$$

and hence the line L: x = 0 is a line of invariant points.

If $b \neq 0$, we want to show that all points on the line L: (a-1)x + by = 0 satisfy the second equation. We multiply (d-1) on both sides of the equation, and hence

$$(a-1)(d-1)x + b(d-1)y = 0,$$

which is

$$bcx + b(d-1)y = 0.$$

Since $b \neq 0$, we divide b on both sides, giving

$$cx + (d-1)y = 0,$$

which is precisely the second equation. Hence, L:(a-1)x+by=0 is a line of invariant points under this case.

3. We have $L_2: y = mx + k, k \neq 0$, we therefore have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ mx + k \end{pmatrix} = \begin{pmatrix} X \\ mX + k \end{pmatrix},$$

and hence

$$ax + b(mx + k) = X, cx + d(mx + k) = mX + k.$$

Putting the first equation into the second one gives us

$$cx + d(mx + k) = m(ax + b(mx + k)) + k,$$

which simplifies to

$$(c+dm-am-bm^2)x + (dk-mbk-k) = 0,$$

which is

$$(bm^2 + (a - d)m - c)x + (mb - d + 1)k = 0.$$

Since this is true for all x and $k \neq 0$, we must have

$$bm^2 + (a-d)m - c = 0, bm - d + 1 = 0.$$

If b = 0, then

$$(a-d)m = c, d-1 = 0,$$

Eason Shao Page 270 of 430

and hence d = 1, (a - 1)m = c, and

$$(a-1)(d-1) = 0, bc = 0,$$

which gives

$$(a-1)(d-1) = bc.$$

If $b \neq 0$, the second of those equations solve to

$$m = \frac{d-1}{b},$$

and putting this back into the first equation, we have

$$b \cdot \frac{(d-1)^2}{b^2} + \frac{(a-d)(d-1)}{b} - c = 0,$$

and multiplying both sides by b gives

$$(d-1)^2 + (a-d)(d-1) = bc,$$

and hence

$$(a-1)(d-1) = bc.$$

Therefore, in both cases, we have (a-1)(d-1)=bc, as desired.

Eason Shao Page 271 of 430

2019.3 Question 4

- 1. We look at different cases depending on the value of n.
 - When n=1, $P(x)=x-a_1$ has root a_1 , and thus is reflective for all $a_1 \in \mathbb{R}$.
 - When n=2, $P(x)=x^2-a_1x+a_2$ has root a_1,a_2 , and hence by Vieta's Theorem,

$$a_1a_2 = a_2, a_1 + a_2 = a_1.$$

This means $a_2 = 0$ and a_1 can take any real value, and hence

$$P(x) = x^2 - a_1 x$$

is reflective for $a_1 \in \mathbb{R}$.

• When n = 3, $P(x) = x^3 - a_1x^2 + a_2x - a_3$ has root a_1, a_2, a_3 , and hence by Vieta's Theorem,

$$\begin{cases} a_1 a_2 a_3 = a_3, \\ a_1 a_2 + a_1 a_3 + a_2 a_3 = a_2, \\ a_1 + a_2 + a_3 = a_1. \end{cases}$$

The final equation implies that $a_2 + a_3 = 0$, and hence with the second equation gives that $a_2a_3 = a_2$, which means either $a_2 = a_3 = 0$, or $a_2 = -1$, $a_3 = 1$.

When $a_2 = a_3 = 0$, a_1 can take any real value, and when $a_2 = -1$, $a_3 = 1$, we must have $a_1 = -1$.

So the degree 3 reflective polynomials are

$$P(x) = x^3 - a_1 x^2$$

for all $a_1 \in \mathbb{R}$, and

$$P(x) = x^3 + x^2 - x - 1.$$

2. By Vieta's Theorem, we have

$$\sum_{i=1}^{n} a_i = a_1,$$

and hence

$$\sum_{i=2}^{n} a_i = 0.$$

Squaring both sides gives

$$0 = \left(\sum_{i=2}^{n} a_i\right)^2$$
$$= \sum_{i=2}^{n} a_i^2 + 2\sum_{i=2}^{n-1} \sum_{j=i+1}^{n} a_i a_j.$$

By Vieta's Theorem, we also have

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_i a_j = a_2,$$

Eason Shao Page 272 of 430

and notice that

$$2a_{2} = 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i}a_{j}$$

$$= 2\sum_{j=2}^{n} a_{1}a_{j} + 2\sum_{i=2}^{n-1} \sum_{j=i+1}^{n} a_{i}a_{j}$$

$$= 2a_{1}\sum_{i=2}^{n} a_{i} + \left(-\sum_{i=2}^{n} a_{i}^{2}\right)$$

$$= 2a_{1} \cdot 0 - \sum_{i=2}^{n} a_{i}^{2}$$

$$= -\sum_{i=2}^{n} a_{i}^{2},$$

as desired.

For the final part, assume B.W.O.C. that n > 3. By rearrangement, we have

$$a_2^2 + 2a_2 + 1 = 1 - \sum_{i=3}^{n} a_i^2,$$

and the left-hand side is $(a_2 + 1)^2$ which is always non-negative. Hence,

$$\sum_{i=3}^{n} a_i^2 \le 1.$$

Since a_i are all integers, precisely one of the a_i s for $3 \le i \le n$ is ± 1 , and all the rest are 0. Since $a_n \ne 0$, we conclude that $a_n = \pm 1$, and $a_3 = \cdots = a_{n-1} = 0$.

But notice from Vieta's Theorem that

$$a_n = \prod_{i=1}^n a_i = 0$$

since a_3 must be 0, which leads to a contradiction.

Hence, we must have $n \leq 3$.

- 3. The reflective polynomials for $n \leq 3$ are
 - $P(x) = x a_1$ for $a_1 \in \mathbb{Z}$,
 - $P(x) = x^2 a_1 x$ for $a_1 \in \mathbb{Z}$,
 - $P(x) = x^3 a_1 x^2$ for $a_1 \in \mathbb{Z}$, and
 - $P(x) = x^3 + x^2 x 1$.

For n > 3, we must have $a_n = 0$, and hence

$$P(x) = x^{n} - a_{1}x^{n-1} + a_{2}x^{n-2} - \dots + (-1)^{n-1}a_{n-1}x$$
$$= x \left(x^{n-1} - a_{2}x^{n-2} + a_{2}x^{n-3} - \dots + (-1)^{n-1}a_{n-1}\right).$$

Let

$$Q(x) = x^{n-1} - a_2 x^{n-2} + a_2 x^{n-3} - \dots + (-1)^{n-1} a_{n-1}$$

If P(x) is reflective, then the roots to P(x) are $a_1, a_2, \ldots, a_{n-1}, 0$, and hence the roots to Q(x) are $a_1, a_2, \ldots, a_{n-1}$, which shows that Q(x) is reflective as well.

This means that an integer-coefficient reflective polynomial with degree n > 3 must be x multiplied by another integer-coefficient reflective polynomial, and repeating this process, we can conclude it must be some power of x multiplied by some integer-coefficient reflective polynomial with degree $n \le 3$.

Hence, all integer-coefficient reflective polynomials are

Eason Shao Page 273 of 430

- $P(x) = x^r(x a_1)$ for $a_1 \in \mathbb{Z}$, $r \in \mathbb{Z}$, $r \ge 0$, and
- $P(x) = x^r(x^3 + x^2 x 1) = x^2(x+1)^2(x-1)$ for $r \in \mathbb{Z}$, $r \ge 0$.

Eason Shao Page 274 of 430

2019.3 Question 5

1. By quotient rule,

$$f'(x) = \frac{\sqrt{x^2 + p} - x \cdot \frac{1}{2} \cdot 2x \cdot \frac{1}{\sqrt{x^2 + p}}}{x^2 + p}$$
$$= \frac{\sqrt{x^2 + p} - \frac{x^2}{\sqrt{x^2 + p}}}{x^2 + p}$$
$$= \frac{p}{(x^2 + p)\sqrt{x^2 + p}}.$$

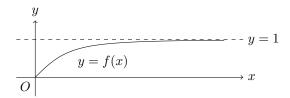
This gives

$$0 < f'(x) \le \frac{1}{\sqrt{p}},$$

with the equal sign taking if and only if x = 0.

 $\lim_{x\to\infty} f(x) = 1$, so y = 1 is a horizontal asymptote to the function.

Hence, the graph looks as follows:



2. Since $y = \frac{cx}{\sqrt{x^2+p}} = cf(x)$, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = cf'(x) = \frac{cp}{\left(\sqrt{x^2 + p}\right)^3},$$

and hence

$$\mathrm{d}y = \frac{cp}{\left(\sqrt{x^2 + p}\right)^3} \, \mathrm{d}x.$$

The integral can therefore be simplified as

$$\begin{split} I &= \int \frac{\mathrm{d}y}{(b^2 - y^2)\sqrt{c^2 - y^2}} \\ &= \int \frac{1}{\left(b^2 - \frac{c^2 x^2}{x^2 + p}\right)\sqrt{c^2 - \frac{c^2 x^2}{x^2 + p}}} \cdot \frac{cp}{\left(\sqrt{x^2 + p}\right)^3} \, \mathrm{d}x \\ &= \int \frac{cp \, \mathrm{d}x}{(b^2 (x^2 + p) - c^2 x^2)\sqrt{c^2 (x^2 + p) - c^2 x^2}} \\ &= \int \frac{cp \, \mathrm{d}x}{\left[(b^2 - c^2)x^2 + b^2 p\right]\sqrt{c^2 p}} \\ &= \int \frac{\sqrt{p} \, \mathrm{d}x}{b^2 p + (b^2 - c^2)x^2}. \end{split}$$

Let p = 1, and we have

$$I = \int \frac{\mathrm{d}x}{b^2 + (b^2 - c^2)x^2}$$

as desired.

Eason Shao Page 275 of 430

Hence,

$$\begin{split} I &= \int \frac{\mathrm{d}x}{b^2 + (b^2 - c^2)x^2} \\ &= \frac{1}{b^2 - c^2} \int \frac{\mathrm{d}x}{\left(\frac{b}{\sqrt{b^2 - c^2}}\right)^2 + x^2} \\ &= \frac{1}{b^2 - c^2} \cdot \frac{\sqrt{b^2 - c^2}}{b} \arctan \frac{\sqrt{b^2 - c^2}x}{b} + C \\ &= \frac{1}{b\sqrt{b^2 - c^2}} \arctan \frac{\sqrt{b^2 - c^2}x}{b} + C. \end{split}$$

Let $b = \sqrt{3}$ and $c = \sqrt{2}$, and hence

$$I = \frac{1}{\sqrt{3}\sqrt{3-2}} \arctan \frac{\sqrt{3-2}x}{\sqrt{3}} + C = \frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + C.$$

When y = 1, $\frac{\sqrt{2}x}{\sqrt{x^2+1}} = 1$, and hence $x^2 + 1 = 2x^2$, $x^2 = 1$, giving x = 1.

When $y \to \sqrt{2} = b$, $x \to \infty$.

Hence,

$$\int_{1}^{\sqrt{2}} \frac{\mathrm{d}y}{(3-y^2)\sqrt{2-y^2}} = \frac{1}{\sqrt{3}} \left[\arctan \frac{x}{\sqrt{3}} \right]_{1}^{\infty} = \frac{1}{\sqrt{3}} \left(\frac{\pi}{2} - \frac{\pi}{6} \right) = \frac{\pi}{3\sqrt{3}}.$$

Consider letting $x = \frac{1}{y}$ in the integral, and we have $dx = -\frac{1}{y^2} dy = -x^2 dy$, and when y = 1, x = 1, and when $y = \sqrt{2}$, $x = \frac{1}{\sqrt{2}}$. Hence,

$$\int_{\frac{1}{\sqrt{2}}}^{1} \frac{y \, dy}{(3y^2 - 1)\sqrt{2y^2 - 1}} = \int_{\sqrt{2}}^{1} \frac{\frac{1}{x} \cdot \frac{1}{-x^2} \, dx}{\left(\frac{3}{x^2} - 1\right)\sqrt{\frac{2}{x^2} - 1}}$$
$$= \int_{1}^{\sqrt{2}} \frac{dx}{(3 - x^2)\sqrt{2 - x^2}}$$
$$= \frac{\pi}{3\sqrt{3}}.$$

3. Consider the same substitution $y = \frac{ax}{\sqrt{x^2 + p}}$. We still have

$$\mathrm{d}y = \frac{ap}{\left(\sqrt{x^2 + p}\right)^3} \, \mathrm{d}x,$$

and hence

$$\begin{split} & \int \frac{\mathrm{d}y}{(3y^2 - 1)\sqrt{2y^2 - 1}} \\ &= \int \frac{ap}{\left(\sqrt{x^2 + p}\right)^3} \cdot \frac{\mathrm{d}x}{\left(3 \cdot \frac{a^2x^2}{x^2 + p} - 1\right)\sqrt{2 \cdot \frac{a^2x^2}{x^2 + p} - 1}} \\ &= \int \frac{ap\,\mathrm{d}x}{(3a^2x^2 - (x^2 + p))\sqrt{2a^2x^2 - (x^2 + p)}} \\ &= \int \frac{ap\,\mathrm{d}x}{((3a^2 - 1)x^2 - p)\sqrt{(2a^2 - 1)x^2 - p}}. \end{split}$$

Eason Shao Page 276 of 430

Consider letting $a = \frac{1}{\sqrt{2}}$ and p = -1, and we have

$$\int \frac{\mathrm{d}y}{(3y^2 - 1)\sqrt{2y^2 - 1}}$$

$$= \int \frac{-\mathrm{d}x}{\sqrt{2}\left(\frac{1}{2}x^2 + 1\right)}$$

$$= \int \frac{-\sqrt{2}\,\mathrm{d}x}{x^2 + 2}$$

$$= -\sqrt{2} \cdot \frac{1}{\sqrt{2}}\arctan\frac{x}{\sqrt{2}} + C$$

$$= -\arctan\frac{x}{\sqrt{2}} + C.$$

When $y = \frac{1}{\sqrt{2}}$, we have $\frac{1}{\sqrt{2}} \cdot \frac{x}{\sqrt{x^2 - 1}} = \frac{1}{\sqrt{2}}$, and $x \to \infty$. When y = 1, we have $\frac{1}{\sqrt{2}} \cdot \frac{x}{\sqrt{x^2 - 1}} = 1$, and $x = \sqrt{2}$. Hence,

$$\int_{\frac{1}{\sqrt{2}}}^{1} \frac{\mathrm{d}y}{(3y^2 - 1)\sqrt{2y^2 - 1}}$$

$$= -\left[\arctan\frac{x}{\sqrt{2}}\right]_{\infty}^{\sqrt{2}}$$

$$= \left[\arctan\frac{x}{\sqrt{2}}\right]_{\sqrt{2}}^{\infty}$$

$$= \frac{\pi}{2} - \frac{\pi}{4}$$

$$= \frac{\pi}{4}.$$

Eason Shao Page 277 of 430

2019.3 Question 6

Notice that the original equation

$$zz^* - az^* - a^*z + aa^* - r^2 = 0$$

can be simplified to

$$(z - a)(z^* - a^*) = r^2,$$

and the left-hand side satisfies

$$(z-a)(z^*-a^*) = (z-a)(z-a)^* = |z-a|^2,$$

which means the original equation is

$$|z - a|^2 = r^2,$$

and hence

$$|z - a| = r$$
.

This is a circle centred at a with radius r.

1. Since $\omega = \frac{1}{z}$, we have $z = \frac{1}{\omega}$. Hence,

$$\frac{1}{\omega} \frac{1}{\omega^*} - a \frac{1}{\omega^*} - \frac{1}{\omega} a^* + aa^* = r^2$$

$$1 - \omega a - \omega^* a^* + aa^* \omega \omega^* = r^2 \omega \omega^*$$

$$(r^2 - aa^*) \omega \omega^* + \omega a + \omega^* a^* = 1$$

$$\omega \omega^* + \frac{a}{r^2 - aa^*} \omega + \frac{a^*}{r^2 - aa^*} \omega^* = \frac{1}{r^2 - aa^*}$$

$$\left(\omega + \frac{a^*}{r^2 - aa^*}\right) \left(\omega + \frac{a^*}{r^2 - aa^*}\right)^* = \frac{1}{r^2 - aa^*} + \frac{aa^*}{(r^2 - aa^*)^2}$$

$$\left|\omega - \frac{a^*}{aa^* - r^2}\right|^2 = \frac{r^2}{(r^2 - aa^*)^2}$$

$$\left|\omega - \frac{a^*}{aa^* - r^2}\right| = \frac{r}{|r^2 - aa^*|},$$

so ω is on a circle C' with centre $\frac{a^*}{aa^*-r^2}$ and radius $\frac{r}{|r^2-aa^*|}$.

If C and C' are the same circle, we have

$$a = \frac{a^*}{aa^* - r^2}, r = \frac{r}{|r^2 - aa^*|}.$$

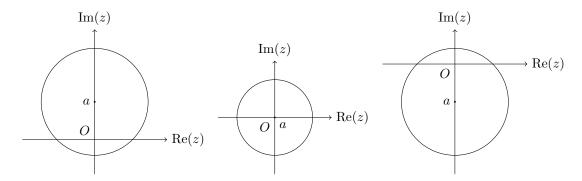
The second equation gives $|r^2 - aa^*| = 1$, which means $r^2 - aa^* = \pm 1$.

$$r^{2} - aa^{*} = \pm 1$$
$$r^{2} - |a|^{2} = \pm 1$$
$$(|a|^{2} - r^{2})^{2} = 1,$$

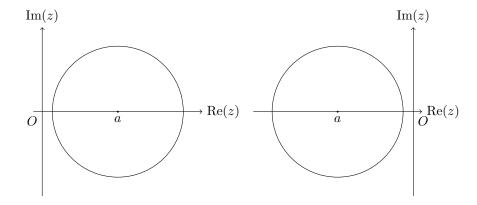
as desired.

When $r^2 - aa^* = 1$, $a = -a^*$, and hence a is pure imaginary. Since $r^2 = 1 + |a|^2$ in this case, r > |a|, so the circle must contain the origin. The diagrams are as below, with the case Im(a) > 0 on the left, Im(a) = 0 in the middle, and Im(a) < 0 on the right:

Eason Shao Page 278 of 430



When $r^2 - aa^* = -1$, $a = a^*$, and hence a is real. Since $r^2 = -1 + |a|^2$ in this case, r < |a|, so the circle cannot contain the origin, and |a| > 1. The diagrams are as below, with the case Re(a) > 1 on the left, and Re(a) < -1 on the right:



2. In the case where $\omega = \frac{1}{z^*}$, we have $z = \frac{1}{\omega^*}$, and hence similar to the previous one,

$$\omega\omega^* + \frac{a}{r^2 - aa^*}\omega^* + \frac{a^*}{r^2 - aa^*}\omega = \frac{1}{r^2 - aa^*}$$

$$\left(\omega + \frac{a}{r^2 - aa^*}\right)\left(\omega + \frac{a}{r^2 - aa^*}\right)^* = \frac{1}{r^2 - aa^*} + \frac{aa^*}{(r^2 - aa^*)^2}$$

$$\left|\omega - \frac{a}{aa^* - r^2}\right|^2 = \frac{r^2}{(r^2 - aa^*)^2}$$

$$\left|\omega - \frac{a}{aa^* - r^2}\right| = \frac{r}{|r^2 - aa^*|},$$

so ω is on a circle C' with centre $\frac{a}{aa^*-r^2}$ and radius $\frac{r}{|r^2-aa^*|}$.

If they are the same circle, we have

$$a = \frac{a}{aa^* - r^2}, r = \frac{r}{|r^2 - aa^*|}.$$

We still have $r^2 - aa^* = \pm 1$.

When $r^2 - aa^* = 1$, we have a = -a, and a = 0.

When $r^2 - aa^* = -1$, we have a = a, and a can be any complex number satisfying $|a| = \sqrt{r^2 + 1}$. It is not the case that a is either real or pure imaginary.

Eason Shao Page 279 of 430

2019.3 Question 7

1. When a = b,

$$y^{2}(y^{2} - a^{2}) = x^{2}(x^{2} - a^{2})$$

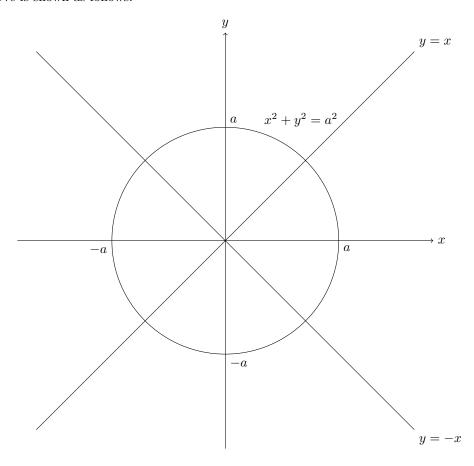
$$x^{4} - y^{4} - a^{2}x^{2} + a^{2}y^{2} = 0$$

$$(x^{2} + y^{2} - a^{2})(x^{2} - y^{2}) = 0$$

$$(x^{2} + y^{2} - a^{2})(x + y)(x - y) = 0,$$

so the Devil's Curve in this case consists of the line x + y = 0, the line x - y = 0, and the circle $x^2 + y^2 = a^2$.

The curve is shown as follows.



2. When a = 2 and $b = \sqrt{5}$,

$$y^2(y^2 - 5) = x^2(x^2 - 4).$$

(a) Rearrangement gives us

$$(x^2)^2 - 4x^2 - y^2(y^2 - 5) = 0,$$

and considering the discriminant, we have

$$(-4)^2 + 4y^2(y^2 - 5) \ge 0,$$

i.e.

$$(y^2 - 1)(y^2 - 4) \ge 0.$$

This gives $y^2 \le 1$ or $y^2 \ge 4$, and in the case where $y \ge 0$, this must give $0 \le y \le 1$ or $y \ge 2$, as desired.

(b) When the curve is very close to the origin, we must have $x^4, y^4 \ll x^2, y^2$, and hence $4x^2 \approx 5y^2$, which means $y \approx \frac{2}{\sqrt{5}}x$.

When the curve is very far from the origin, we must have $x^4, y^4 \gg x^2, y^2$, and hence $x^4 \approx y^4$, which means $y \approx x$.

Eason Shao Page 280 of 430

(c) Using implicit differentiation, we have

$$y^{2}(y^{2} - 5) = x^{2}(x^{2} - 4)$$
$$(4y^{3} - 10y)\frac{dy}{dx} = 4x^{3} - 8x$$
$$(2y^{2} - 5)y\frac{dy}{dx} = 2x(x^{2} - 2).$$

When $\frac{dy}{dx} = 0$, the tangent to the curve is parallel to the x-axis, and hence

$$2x(x^2 - 2) = 0,$$

giving x = 0 or $x = \sqrt{2}$.

For $x=0, y^2(y^2-5)=0$, and therefore y=0 or $y=\sqrt{5}$. The case where y=0 does not necessarily give that $\frac{\mathrm{d}y}{\mathrm{d}x}=0$, but the case where $y=\sqrt{5}$ does.

For $x = \sqrt{2}$, $y^2(y^2 - 5) = -4$, y = 2 or y = 1. Both cases give $\frac{dy}{dx} = 0$.

So the tangent to the curve is parallel to the x-axis at points

$$(0,\sqrt{5}),(\sqrt{2},1),(\sqrt{2},2).$$

We must have

$$(2y^2 - 5)y = 2x(x^2 - 2)\frac{\mathrm{d}x}{\mathrm{d}y},$$

and when $\frac{dx}{dy} = 0$, the tangent to the curve is parallel to the y-axis.

This gives $(2y^2 - 5)y = 0$, and hence y = 0 or $y = \sqrt{\frac{5}{2}}$.

For y = 0, x = 0 or x = 2. The case x = 0 does not necessarily give $\frac{dx}{dy} = 0$, but the case where x = 2 does.

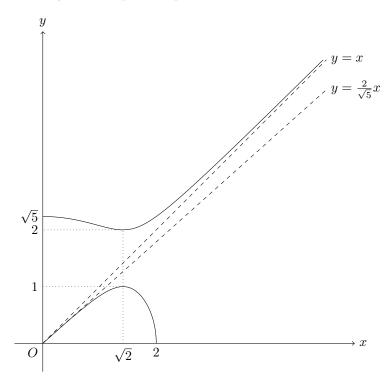
For $y = \sqrt{\frac{5}{2}}$, $x^2(x^2 - 4) = -\frac{25}{4}$, and hence

$$4x^4 - 16x^2 + 25 = 4(x^2 - 2)^2 + 9 = 0,$$

which is not possible.

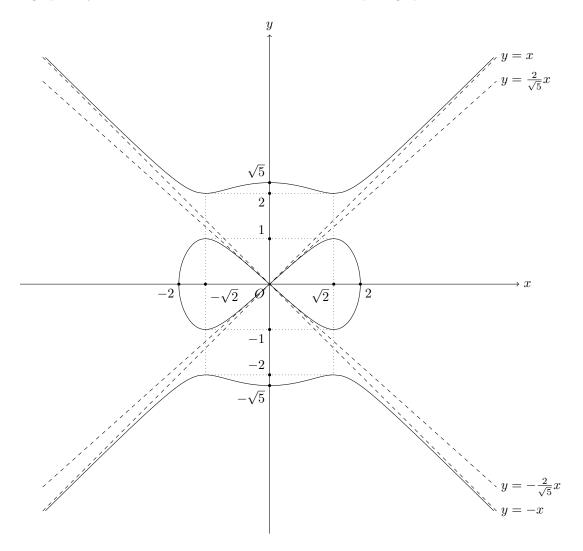
Hence, the tangent to the curve is parallel to the y-axis only at (2,0).

Therefore, from the analysis in the previous parts, the curve looks as follows for $x \ge 0$ and $y \ge 0$:



Eason Shao Page 281 of 430

3. All x terms in the curve is in x^2 , so the graph is symmetric in the y-axis since $x^2 = (-x)^2$. Similarly, the graph is symmetric in the x-axis as well. Hence, the complete graph looks as follows.



Eason Shao Page 282 of 430

2019.3 Question 8

1. W.L.O.G. let the origin be the centre of the rectangle ABCD (and let ABCD lie on the x-y plane). We adjust the scale of the axis, and we let V(0,0,1) and $A(-\mu,-\nu,0)$, we have $B(\mu,-\nu,0)$, $C(\mu,\nu,0)$ and $D(-\mu,\nu,0)$. Let $\mu,\nu>0$.

Let M be the midpoint of AB and N be the midpoint of BC. We must have $M(0, -\nu, 0)$ and $N(\mu, 0, 0)$.

The angle between the face AVB and the base ABCD must be the angle between \overrightarrow{MO} and \overrightarrow{MV} . Hence,

$$\cos\alpha = \frac{\overrightarrow{MO} \cdot \overrightarrow{MV}}{\left|\overrightarrow{MO}\right| \left|\overrightarrow{MV}\right|}.$$

Note that

$$\overrightarrow{MO} = \begin{pmatrix} 0 \\ \nu \\ 0 \end{pmatrix}, \overrightarrow{MV} = \mathbf{v} - \mathbf{m} = \begin{pmatrix} 0 \\ \nu \\ 1 \end{pmatrix},$$

and hence

$$\cos \alpha = \frac{\nu^2}{\nu \cdot \sqrt{\nu^2 + 1}} = \frac{\nu}{\sqrt{\nu^2 + 1}},$$

which gives

$$\cos^2 \alpha \nu^2 + \cos^2 \alpha = \nu^2,$$

and hence

$$\sin^2 \alpha \nu^2 = \cos^2 \alpha,$$

which gives

$$\nu = \cot \alpha$$
.

Similarly,

$$\mu = \cot \beta$$
.

A vector perpendicular to AVB can be

$$\overrightarrow{VA} \times \overrightarrow{VB} = \begin{pmatrix} -\mu \\ -\nu \\ -1 \end{pmatrix} \times \begin{pmatrix} \mu \\ -\nu \\ -1 \end{pmatrix}$$

$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -\mu & -\nu & -1 \\ \mu & -\nu & -1 \end{vmatrix}$$

$$= \begin{pmatrix} 0 \\ -2\mu \\ 2\mu\nu \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -2\cot\beta \\ 2\cot\alpha\cot\beta. \end{pmatrix}$$

$$= -\frac{2\cot\beta}{\sin\alpha} \begin{pmatrix} 0 \\ -\sin\alpha \\ \cos\alpha \end{pmatrix},$$

and so

$$\begin{pmatrix} 0 \\ -\sin\alpha \\ \cos\alpha \end{pmatrix}$$

is a unit vector perpendicular to AVB.

Eason Shao Page 283 of 430

Similarly,

$$\overrightarrow{VB} \times \overrightarrow{VC} = \begin{pmatrix} \mu \\ -\nu \\ -1 \end{pmatrix} \times \begin{pmatrix} \mu \\ \nu \\ -1 \end{pmatrix}$$

$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mu & -\nu & -1 \\ \mu & \nu & -1 \end{vmatrix}$$

$$= \begin{pmatrix} 2\nu \\ 0 \\ 2\mu\nu \end{pmatrix}$$

$$= \begin{pmatrix} 2\cot\alpha \\ 0 \\ 2\cot\alpha\cot\beta \end{pmatrix}$$

$$= \frac{2\cot\alpha}{\sin\beta} \begin{pmatrix} \sin\beta \\ 0 \\ \cos\beta \end{pmatrix},$$

and hence

$$\begin{pmatrix}
\sin \beta \\
0 \\
\cos \beta
\end{pmatrix}$$

is a unit vector perpendicular to BVC.

The acute angle between AVB and BVC, θ , satisfies that

$$\cos \theta = \begin{pmatrix} 0 \\ -\sin \alpha \\ \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \sin \beta \\ 0 \\ \cos \beta \end{pmatrix} = \cos \alpha \cos \beta,$$

as desired.

2. Notice that

$$\cos \varphi = \frac{\overrightarrow{BV} \cdot \overrightarrow{BO}}{\left| \overrightarrow{BV} \right| \cdot \left| \overrightarrow{BO} \right|}$$

$$= \frac{\begin{pmatrix} -\mu \\ \nu \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -\mu \\ \nu \\ 0 \end{pmatrix}}{\sqrt{\mu^2 + \nu^2 + 1} \sqrt{\mu^2 + \nu^2}}$$

$$= \sqrt{\frac{\mu^2 + \nu^2}{\mu^2 + \nu^2 + 1}},$$

and hence

$$\sin\varphi = \sqrt{1-\cos^2\varphi} = \sqrt{\frac{1}{\mu^2 + \nu^2 + 1}},$$

which means

$$\cot \varphi = \sqrt{\mu^2 + \nu^2},$$

and hence

$$\cot^2 \varphi = \mu^2 + \nu^2 = \cot^2 \alpha + \cot^2 \beta,$$

as desired.

Eason Shao Page 284 of 430

Notice that

$$\cos^{2} \varphi = \frac{\mu^{2} + \nu^{2}}{\mu^{2} + \nu^{2} + 1}$$

$$= \frac{\cot^{2} \alpha + \cot^{2} \beta}{\cot^{2} \alpha + \cot^{2} \beta + 1}$$

$$= \frac{\cos^{2} \alpha \sin^{2} \beta + \cos^{2} \beta \sin^{2} \alpha}{\cos^{2} \alpha \sin^{2} \beta + \cos^{2} \beta \sin^{2} \alpha + \sin^{2} \beta \sin^{2} \alpha}$$

$$= \frac{\cos^{2} \alpha (1 - \cos^{2} \beta) + \cos^{2} \beta (1 - \cos^{2} \alpha)}{(\cos^{2} \alpha + \sin^{2} \alpha)(\cos^{2} \beta + \sin^{2} \beta) - \cos^{2} \alpha \cos^{2} \beta}$$

$$= \frac{\cos^{2} \alpha + \cos^{2} \beta - 2 \cos^{2} \alpha \cos^{2} \beta}{1 - \cos^{2} \alpha \cos^{2} \beta}$$

$$= \frac{\cos^{2} \alpha + \cos^{2} \beta - 2 \cos^{2} \theta}{1 - \cos^{2} \theta}.$$

Since $(\cos \alpha - \cos \beta)^2 = \cos^2 \alpha + \cos^2 \beta - 2\cos \theta \ge 0$, we have $\cos^2 \alpha + \cos^2 \beta \ge 2\cos \theta$, and hence

$$\cos^2\varphi = \frac{\cos^2\alpha + \cos^2\beta - 2\cos^2\theta}{1 - \cos^2\theta} \ge \frac{2\cos\theta - 2\cos^2\theta}{1 - \cos^2\theta}.$$

Notice that

$$\cos^{2} \varphi \ge \frac{2\cos\theta - 2\cos^{2}\theta}{1 - \cos^{2}\theta}$$

$$= \frac{2\cos\theta(1 - \cos\theta)}{(1 - \cos\theta)(1 + \cos\theta)}$$

$$= \frac{2\cos\theta}{1 + \cos\theta}$$

$$= \frac{2}{1 + \cos\theta}\cos\theta$$

$$> \frac{2}{1 + 1}\cos\theta$$

$$= \cos\theta$$

$$> \cos^{2}\theta,$$

since θ is acute, $0 < \cos \theta < 1$.

This means $\cos^2 \varphi > \cos^2 \theta$, and since θ, φ are acute, this must mean that $\varphi < \theta$, since $\cos \varphi, \cos \theta$ are both positive, and $\cos \varphi > \cos \theta$.

Eason Shao Page 285 of 430

2019.3 Question 11

1. Let X be the number of customers arriving at builders' merchants on a day, and we have $X \sim \text{Po}(\lambda)$. This means

$$P(X = x) = \frac{\lambda^x}{e^{\lambda} x!}$$

for x = 0, 1, ...

Let Y be the number of customers taking the sand on a day. Then we have $(Y \mid X = x) \sim B(x, p)$, and hence

$$P(Y = y \mid X = x) = {x \choose y} p^y (1-p)^{x-y}.$$

Hence, we have

$$\begin{split} \mathbf{P}(Y = y) &= \sum_{x=0}^{\infty} \mathbf{P}(Y = y, X = x) \\ &= \sum_{x=0}^{\infty} \mathbf{P}(Y = y \mid X = x) \, \mathbf{P}(X = x) \\ &= \sum_{x=y}^{\infty} \mathbf{P}(Y = y \mid X = x) \, \mathbf{P}(X = x) \\ &= \sum_{x=y}^{\infty} \left(\frac{x}{y}\right) p^{y} (1 - p)^{x - y} \cdot \frac{\lambda^{x}}{e^{\lambda} x!} \\ &= \sum_{x=y}^{\infty} \frac{x! p^{y} (1 - p)^{x - y} \cdot \lambda^{x}}{y! (x - y)! (1 - p)^{y} e^{\lambda} x!} \\ &= \frac{p^{y}}{y! (1 - p)^{y} e^{\lambda}} \sum_{x=y}^{\infty} \frac{(1 - p)^{x} \lambda^{x}}{(x - y)!} \\ &= \frac{p^{y}}{y! (1 - p)^{y} e^{\lambda}} \sum_{x=0}^{\infty} \frac{[\lambda (1 - p)]^{x + y}}{x!} \\ &= \frac{p^{y} \lambda^{y}}{y! e^{\lambda}} \sum_{x=0}^{\infty} \frac{[\lambda (1 - p)]^{x}}{x!} \\ &= \frac{(p\lambda)^{y}}{y! e^{\lambda}}, \end{split}$$

which is precisely the probability mass function of $Po(p\lambda)$, as desired.

2. Let Z be the amount of sand remaining at the end of a day, and hence

$$Z = S(1 - k)^{Y}.$$

Hence, the expectation of Z is given by

$$\begin{split} \mathbf{E}(Z) &= S \, \mathbf{E} \left[(1-k)^Y \right] \\ &= S \sum_{y=0}^{\infty} (1-k)^y \, \mathbf{P}(Y=y) \\ &= \frac{S}{e^{p\lambda}} \sum_{y=0}^{\infty} \frac{(p\lambda(1-k))^y}{y!} \\ &= \frac{S}{e^{p\lambda}} e^{p\lambda(1-k)} \\ &= \frac{S}{e^{pk\lambda}}. \end{split}$$

Eason Shao Page 286 of 430

Let Z' be the amount of sand taken, and hence

$$Z' = S - Z$$

which means

$$E(Z') = S - E(Z) = S \left(1 - e^{-pk\lambda} \right),\,$$

precisely as desired.

3. Given that Z = z, the assistant will take kz of the remaining sand, and the probability of the assistant taking the golden grain event (denoted as G) is

$$P(G \mid Z = z) = \frac{kz}{S}.$$

Using $Z = S(1-k)^Y$, we have

$$P(G \mid Y = y) = k(1 - k)^y$$

$$\begin{split} \mathbf{P}(G) &= \sum_{y=0}^{\infty} \mathbf{P}(G, Y = y) \\ &= \sum_{y=0}^{\infty} \mathbf{P}(G \mid Y = y) \, \mathbf{P}(Y = y) \\ &= \sum_{y=0}^{\infty} k(1-k)^y \cdot \frac{(p\lambda)^y}{y!e^{p\lambda}} \\ &= \frac{k}{e^{p\lambda}} \sum_{y=0}^{\infty} \frac{(p\lambda(1-k))^y}{y!} \\ &= \frac{k}{e^{p\lambda}} e^{p\lambda(1-k)} \\ &= \frac{k}{e^{pk\lambda}}. \end{split}$$

In the case where k=0, no sand is taken, and hence the probability is 0.

In the case where $k \to 1$, $P(G) = e^{-p\lambda}$, which is the probability that Y = 0. This is precisely when no customer takes any sand (since if any took the sand they must have taken the gold grain), and as $k \to 1$ the merchants' assistant is guaranteed to take the gold provided it is still existent in the final pile.

In the case where $p\lambda > 1$, we differentiate the probability with respect to k, which gives

$$\frac{\mathrm{d}k e^{-pk\lambda}}{\mathrm{d}k} = (1 - pk\lambda)e^{-pk\lambda}.$$

 $e^{-pk\lambda}$ is always positive. In the case where $k < \frac{1}{p\lambda}$, $1 - pk\lambda > 0$, and when $k > \frac{1}{p\lambda}$, $1 - pk\lambda < 0$. Hence, precisely when $k = \frac{1}{p\lambda}$, we will have P(G) taking a maximum, and since $p\lambda > 1$, this k will satisfy 0 < k < 1 which is within the range.

Hence, the value of k that maximises P(G) is

$$k = \frac{1}{p\lambda}.$$

Eason Shao Page 287 of 430

2019.3 Question 12

For each integer between 1 to n inclusive, they are either in a subset of S, an element of T, or not. For each integer there are 2 choices, and there are n integers, this means that

$$|T|=2^n$$
,

as desired.

1. Since there is an equal number of sets $B \in T$ for $1 \in B$ and $1 \notin B$, this means

$$P(1 \in A_1) = \frac{1}{2}.$$

2. For each of the integer $1 \le t \le n$, $t \notin A_1 \cap A_2$ if and only if they cannot be in both of A_1 and A_2 , and hence

$$P(t \notin A_1 \cap A_2) = 1 - \left(\frac{1}{2}\right)^2 = \frac{3}{4},$$

and $A_1 \cap A_2 = \emptyset$ if and only if for all $1 \le t \le n$, that $t \notin A_1 \cap A_2$. All these events are independent, and hence

$$P(A_1 \cap A_2 = \varnothing) = \left(\frac{3}{4}\right)^n.$$

By similar reasoning,

$$P(A_1 \cap A_2 \cap A_3 = \varnothing) = \left(\frac{7}{8}\right)^n,$$

and

$$P(A_1 \cap A_2 \cap \dots \cap A_m = \varnothing) = \left[1 - \left(\frac{1}{2}\right)^m\right]^n = \left(1 - \frac{1}{2^m}\right)^n.$$

3. $A_1 \subseteq A_2$ if and only if for any $1 \le t \le n$, we have $t \in A_1 \implies t \in A_2$. For this to happen, either $t \notin A_1$ (in which case we do not worry about whether t is in A_2 or not), or $t \in A_1$ and $t \in A_2$. This means

$$P(t \in A_1 \implies t \in A_2) = \frac{3}{4},$$

and hence

$$P(A_1 \subseteq A_2) = \left(\frac{3}{4}\right)^n.$$

For any $1 \le t \le n$, $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_m$ means we have $t \in A_1 \implies t \in A_2 \implies \cdots \implies t \in A_m$. This happens if and only if $t \in A_i$ gives $t \in A_j$ for all $j \ge i$, and this is true if and only if there exists some $0 \le k \le m$, such that for $1 \le i \le k$, $t \notin A_k$, and for $k < j \le m$, $t \in A_k$.

There are precisely m+1 choices for such k, and this means

$$P(t \in A_1 \implies t \in A_2 \implies \cdots \implies t \in A_m) = \frac{m+1}{2^m},$$

and hence

$$P(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_m) = \left(\frac{m+1}{2^m}\right)^n$$

which gives

$$P(A_1 \subseteq A_2 \subseteq A_3) = \left(\frac{1}{2}\right)^n.$$

Eason Shao Page 288 of 430