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2018.2 Question 1

First, notice that x = 0 must not be a root to this quartic equation. Therefore, we can divide both sides
by x2, and the original equation is equivalent to

x2 +
1

x2
+ a

(
x+

1

x

)
+ b = 0,

and this rearranges to (
x+

1

x

)2

+ a

(
x+

1

x

)
+ (b− 2) = 0.

Notice that

k +
1

k
=

1

k−1
+ k−1 = k−1 +

1

k−1
,

so if x = k satisfies this equation, then x = k−1 also satisfies this equation.
Notice that the range of t = x+ 1

x for non-zero real x is t ∈ (−∞,−2] ∪ [2,∞).
Since it is given that all the roots are real, it must be the case that the quadratic equation

t2 + at+ (b− 2) = 0

produces two real roots situated within (−∞,−2] ∪ [2,∞).
Notice that for t ∈ (−∞,−2] ∪ [2,∞), the equation

x+
1

x
= t

has precisely two real roots for t ̸= ±2, and precisely one x = ±1 for t = ±2.

1. In this case, by the previous analysis, the only possibility is that x1 = x2 = x3 = x4 = ∓1. This
means that

x4 + ax3 + bx2 + ax+ 1 = (x± 1)4 = x4 ± 4x3 + 6x2 ± 4x+ 1,

and hence (a, b) = (±4, 6).

2. Since there are exactly three distinct roots for x, this means that the one which repeated must be
x1 = x2 = ±1, which leads to t1 = ±2, and those two which does not leads to t2 ̸= ±2.

Putting t1 = ±2 into the quadratic equation in t, we have

4± 2a+ (b− 2) = 0,

and hence
b = ∓2a− 2,

precisely as desired.

3. When b = 2a− 2, we have
t2 + at+ (2a− 4) = 0,

which solves to t1 = −2, t2 = −a+ 2.

For x+ 1
x = t1 = −2, this solves to x1 = x2 = −1.

For x+ 1
x = t2 = −a+ 2, this rearranges to

x2 + (a− 2)x+ 1 = 0,

and hence the two roots are

x3,4 =
−(a− 2)±

√
(a− 2)2 − 4

2
=

−a+ 2±
√
a2 − 4a

2
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4. We first look at necessary condition. Given the equation has precisely two roots, we have b =
±2a− 2, and hence the quadratic equation in t becomes

t2 + at+ (±2a− 4) = 0.

t1 = ∓2 must be a root, and notice that this factorises to

t2 + at+ (±2a− 4) = (t± 2)(t− (−a± 2)),

and hence the other root is t2 = −a± 2.

As discussed before, we must have that t2 < −2 or t2 > 2 to produce two distinct roots for x, and
hence

−a± 2 < −2 or − a± 2 > 2,

and hence
a∓ 2 > 2 or a∓ 2 < −2,

and hence
a > 2± 2 or a < −2± 2.

Therefore, a necessary condition is b = ±2a− 2, and a ∈ (−∞,−2± 2) ∪ (2± 2,∞).

We would like to show that this is a sufficient condition as well. If b = ±2a − 2 and a ∈
(−∞,−2± 2) ∪ (2± 2,∞), we have the quadratic in t simplifies to

t2 + at+ (±2a− 4) = (t± 2)(t− (−a± 2)) = 0.

This gives roots t1 = ∓2 which in turn gives x1 = x2 = ∓1, and t2 = −a± 2. In the second case,
since

a ∈ (−∞,−2± 2) ∪ (2± 2,∞) ,

we must have
a∓ 2 ∈ (−∞,−2) ∪ (2,∞)

and hence
−a± 2 ∈ (−∞,−2) ∪ (2,∞) .

This shows that there are two distinct xs corresponding to t2, both of which are not equal to ±1.

Hence, in this case, the original equation has 3 distinct roots precisely, and

b = ±2a− 2, a ∈ (−∞,−2± 2) ∪ (2± 2,∞)

is a necessary and sufficient condition for the original equation to have precisely 3 distinct real
roots.

The following is to simplify this to what is written in the mark scheme. b = ±2a− 2 is equivalent
to b+ 2 = ±2a, and (b+ 2)2 = 4a2.

The second part is equivalent to a∓ 2 ∈ (−∞,−2) ∪ (2,∞), i.e.

(a∓ 2)2 = a2 ∓ 4a+ 4 > 4,

i.e.
a2 > ±4a = 2± 2a = 2(b+ 2) = 2b+ 4,

precisely what is in the mark scheme.
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2018.2 Question 2

x

y

y = f(x)

x1 x2tx1 + (1− t)x2

tf(x1) + (1− t)f(x2)

f(tx1 + (1− t)x2)

f(x1)

f(x2)

If f ′′(x) < 0, this means f ′(x) is decreasing, i.e. the gradient of a tangent to the curve y = f(x) is
decreasing. Assume, B.W.O.C., that some f(x) satisfies this condition but is not convex. This means
that there exists some a < x1 < x2 < b and some 0 < t < 1 that

tf(x1) + (1− t)f(x2) ≥ f(tx1 + (1− t)x2).

This means that some point on the chord connecting (x1, f(x1)) and (x2, f(x2)) is above the graph of
the function at that point with x-coordinate tx1 + (1− t)x2. Hence, the gradient of that function must
be less than the gradient of the chord at that point, and since f ′′(x) < 0, the function must continue to
have a gradient of less than this, and hence cannot pass through (x2, f(x2)).

Hence, this triple of (x1, x2, t) does not exist, and the function f must be concave on (a, b).

1. Let x1 = 2u+v
3 and x2 = v+2w

3 , and let t = 1
2 . We can see that a < x1, x2 < b and hence we have

1

2
f(x1) +

1

2
f(x2) ≤ f

(
1

2
x1 +

1

2
x2

)
,

which gives
1

2
f

(
2u+ v

3

)
+

1

2
f

(
v + 2w

3

)
≤ f

(
u+ v + w

3

)
.

Let x1 = u and x2 = v, and let t = 2
3 . We have

2

3
f(u) +

1

3
f(v) ≤ f

(
2u+ v

3

)
,

and let x1 = w, x2 = v, and let t = 2
3 , we have

2

3
f(w) +

1

3
f(v) ≤ f

(
2w + v

3

)
.

Hence,

f

(
u+ v + w

3

)
≥ 1

2
f

(
2u+ v

3

)
+

1

2
f

(
v + 2w

3

)
≥ 1

2
·
[
2

3
f(u) +

1

3
f(v)

]
+

1

2
·
[
2

3
f(w) +

1

3
f(v)

]
=

1

3
[f(u) + f(v) + f(w)] ,

which shows exactly what is desired.
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2. Let a = 0 and b = π, and let f(x) = sinx. We aim to show that f is concave, and notice that

f ′′(x) = − sinx < 0

for all 0 < x < π, so it is concave on (0, π).

Angles in a triangle lie within (0, π), and they must sum up to π. Hence, by applying the previous
part, we have

sinA+ sinB + sinC ≤ 3 sin

(
A+B + C

3

)
= 3 sin

(π
3

)
=

3
√
3

2
,

as desired.

3. We keep a = 0 and b = π, and let f(x) = ln sinx. Note that

f ′(x) =
cosx

sinx
= cotx,

and hence
f ′′(x) = − csc2 x < 0

which shows that f is concave on (0, π).

Hence,

ln(sinA sinB sinC) = ln sinA+ ln sinB + ln sinC

≤ 3 ln sin

(
A+B + C

3

)
= 3 ln sin

(π
3

)
= 3 ln

√
3

2

= ln
3
√
3

8
.

Since ln is a strictly increasing function, we can then conclude that

sinA sinB sinC ≤ 3
√
3

8
,

as desired.
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2018.2 Question 3

1. Notice that

f ′(x) = − sec2 x

(1 + tanx)
2

= − 1

cos2 x (1 + tanx)
2

= − 1

(sinx+ cosx)
2

= − 1

sin2 x+ cos2 x+ 2 sinx cosx

= − 1

1 + sin 2x
,

as desired.

Since 0 ≤ x < 1
2π, 0 ≤ 2x < π, and hence 0 ≤ sin 2x ≤ 1.

This means that −1 ≤ f ′(x) ≤ − 1
2 .

sin 2x increases on
(
0, π

4

)
and decreases on

(
π
4 ,

π
2

)
.

Hence, the graph must look as follows.

y

x
O

1

π
4

1
2

π
2

2. If y = g(x) has rotational symmetry about (a, b), then this means if point (a + x, b+ y) is on the
graph, then the point (a− x, b− y) is on the graph as well.

This means that g(a + x) + g(a − x) = (b + y) + (b − y) = 2b, and setting x′ = a + x gives
g(x′) + g(2a− x′) = 2b gives precisely what is desired.

On the other hand, if for all x, g(x) + g(2a− x) = 2b, then points (x, g(x)) and (2a− x, g(2a− x))
on the graph, have midpoint(

x+ (2a− x)

2
,
g(x) + g(2a− x)

2

)
= (a, b)

is the desired centre of symmetry. This means each point on the graph corresponds to another
point on the graph when mirrored through the desired centre of symmetry, showing it has rotational
symmetry of order 2 about that point, precisely as desired.

The integral evaluates to zero.
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3. We would like to show that this function has rotational symmetry about the point
(
π
4 ,

1
2

)
. Notice

that

y|x + y|2·π4 −x =
1

1 + tank x
+

1

1 + tank
(
π
2 − x

)
=

1

1 + tank x
+

1

1 + cotk x

=
1

1 + tank x
+

tank x

tank x+ 1

=
1 + tank x

1 + tank x

= 1

= 2 · 1
2
,

which shows the rotational symmetry.

Hence, ∫ 1
3π

1
6π

1

1 + tank x
dx =

∫ 1
4π

1
6π

y|x dx+

∫ 1
3π

1
4π

y|x dx

=

∫ 1
4π

1
6π

y|x dx+

∫ 1
4π

1
6π

y|π
2 −x dx

=

∫ 1
4π

1
6π

[
y|x + y|2·π4 −x

]
dx

=

∫ 1
4π

1
6π

dx

=
1

4
π − 1

6
π

=
1

12
π.
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2018.2 Question 4

1. By the identity, we have

cosx+ cos 4x = 2 cos
5

2
x cos

3

2
x,

and

cos 2x+ cos 3x = 2 cos
5

2
x cos

1

2
x.

Hence, we have

cosx+ 3 cos 2x+ 3 cos 3x = 2 cos
5

2
x

(
cos

3

2
x+ 3 cos

1

2
x

)
= 0.

Hence, either

cos
5

2
x = 0,

or

cos
3

2
x+ 3 cos

1

2
x = 0.

In the first case, we have 5
2x = 1

2π + kπ for k ∈ Z, and hence

x =
1 + 2k

5
· π.

Since 0 ≤ x ≤ 2π, we have

0 ≤ 1 + 2k

5
≤ 2,

and hence
0 ≤ 1 + 2k ≤ 10,

giving k = 0, 1, 2, 3, 4. Hence, the solutions are

x =
1

5
π, x =

3

5
π, x = π, x =

7

5
π, x =

9

5
π.

In the second case, notice that

cos 3t = cos(2t+ t)

= cos 2t cos t− sin 2t sin t

= (cos2 t− sin2 t) cos t− 2 sin2 t cos t

= cos3 t− 3 sin2 cos t.

Hence,

cos
3

2
x+ 3 cos

1

2
x = 0 ⇐⇒ cos3

1

2
x− 3 sin2

1

2
x cos

1

2
x+ 3 cos

1

2
x = 0,

and using the identity sin2 t+ cos2 t = 1, this simplifies to

cos3
1

2
x+ 3 cos3

1

2
x = 0,

which is

cos
1

2
x = 0.

This gives
1

2
x =

π

2
+ kπ

for k ∈ Z, and hence
x = (1 + 2k)π.

Since 0 ≤ x ≤ 2π, the only k valid is k = 0, and this solves to x = π.

Hence, all the solutions to this equation is

x ∈
{
1

5
π,

3

5
π, π,

7

5
π,

9

5
π

}
.
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2. Using the given identity, we have

cos(x+ y) + cos(x− y) = 2 cosx cos y.

Hence, the original equation simplifies to

2 cosx cos y − cos 2x = 1.

Using the identity cos 2x = 2 cos2 x− 1, and this gives

2 cosx cos y − (2 cos2 x− 1) = 1,

and hence
2 cosx cos y − 2 cos2 x = 0,

which means
cosx(cos y − cosx) = 0,

and hence cosx = 0 or cos y − cosx = 0.

The first one gives us x = π
2 in the range x ∈ [0, π].

Since cos is one-to-one when restricted to [0, π], the second one is equivalent to cos y = cosx which
is equivalent to x = y.

The specific value is x = π
2 .

3. Using the identity given, we have

cosx+ cos y = 2 cos
x+ y

2
cos

x− y

2
,

and

cos(x+ y) = 2 cos2
x+ y

2
− 1.

Let u = x+y
2 and v = x−y

2 . We have 0 ≤ u ≤ π and −π
2 ≤ v ≤ π

2 , and the original equation
simplifies to

2 cosu cos v − 2 cos2 u+ 1 =
3

2
,

and hence
4 cosu cos v − 4 cos2 u+ 2 = 3,

and
4 cos2 u− 4 cosu cos v + 1 = 0.

Since 1 = cos2 v + sin2 v, we have

4 cos2 u− 4 cosu cos v + cos2 v = − sin2 v,

and hence
(2 cosu− cos v)2 = − sin2 v.

The left-hand side is non-negative, and the right-hand side is non-positive. Hence, the only way
for the equal sign to take place is when both sides are zero, which is

2 cosu = cos v, sin v = 0.

Within this range of v, the only case where sin v = 0 is when v = 0, and hence 2 cosu = 1,
cosu = 1

2 , leading to u = π
3 .

Hence, x = u+ v = π
3 , and y = u− v = π

3 , and the only solution is

(x, y) =
(π
3
,
π

3

)
.
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2018.2 Question 5

1. For |x| < 1, we have

1

1 + x
= 1− x+ x2 − x3 + · · · =

∞∑
t=0

(−x)t.

Since ln(1 + x) differentiates to 1
1+x , by integration, we have

ln(1 + x) =

∫
1

1 + x
dx

=

∫ ∞∑
t=0

(−x)t dx

=

∞∑
t=0

(−1)t
∫

xt dx

= C +

∞∑
t=0

(−1)t
xt+1

t+ 1

= C −
∞∑
t=1

(−x)t

t
.

Let x = 0, and we see ln(1 + x) = ln 1 = 0, and the sum on the right-hand side evaluates to 0, and
hence C = 0. This gives the Maclaurin expansion for ln(1 + x)

ln(1 + x) = −
∞∑
t=1

(−x)t

t
.

2. We have

e−ax =

∞∑
t=0

(−ax)t

t!
,

and hence ∫ ∞

0

(1− e−ax)e−x

x
dx

=

∫ ∞

0

−
∑∞

t=1
(−ax)t

t! · e−x

x
dx

=

∞∑
t=1

∫ ∞

0

−(−ax)te−x

t!x
dx

=

∞∑
t=1

∫ ∞

0

(−x)t−1ate−x

t!
dx

=

∞∑
t=1

(−1)t−1at

t!

∫ ∞

0

xt−1e−x dx.

We aim to find an expression for

It =

∫ ∞

0

xte−x dx.
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Using integration by parts, we have

It =

∫ ∞

0

xte−x dx

= −
∫ ∞

0

xt de−x

= −
[
(xte−x)∞0 −

∫ ∞

0

e−x dxt

]
= t

∫ ∞

0

e−xxt−1 dx

= tIt−1,

and further noticing that

I0 =

∫ ∞

0

e−x dx =
[
−e−x

]∞
0

= 1,

we can see
It = t!,

and hence ∫ ∞

0

(1− e−ax)e−x

x
dx

=

∞∑
t=1

(−1)t−1at

t!

∫ ∞

0

xt−1e−x dx

=

∞∑
t=1

(−1)t−1at

t!
(t− 1)!

=

∞∑
t=1

(−1)t−1at

t

= −
∞∑
t=1

(−a)t

t

= ln(1 + a),

precisely as desired.

3. Using a substitution x = e−u, when x = 1, u = 0, and when x → 0+, u → ∞. Also,

dx

du
= −e−u,

and hence ∫ 1

0

xp − xq

lnx
dx

=

∫ 0

∞

e−up − e−uq

ln e−u
· (−e−u) du

=

∫ 0

∞

(e−up − e−uq) e−u

u
du

=

∫ ∞

0

[(1− e−up) + (1− e−uq)] e−u

u
du

=

∫ ∞

0

(1− e−up) e−u

u
du−

∫ ∞

0

(1− e−uq) e−u

u
du

= ln(1 + p)− ln(1 + q).
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2018.2 Question 6

1. Notice that for n ≥ 5, n! = 5 · 4! · 6 · 7 · · ·n, and n! = 5k for k = 4! · 6 · 7 · · ·n > 1 is an integer.

Therefore,
n! + 5 = 5k + 5 = 5(k + 1)

is a multiple of two integers greater than 1, and hence p cannot be prime.

Hence, n < 5.

If n = 1, n! + 5 = 6 is not prime.

If n = 2, n! + 5 = 7 is prime. (n, p) = (2, 7) is a solution.

If n = 3, n! + 5 = 11 is prime. (n, p) = (3, 11) is a solution.

If n = 4, n! + 5 = 29 is prime. (n, p) = (4, 29) is a solution.

Therefore, all solutions are (n, p) = (2, 7), (3, 11) and (4, 29).

2. If n ≥ 7, then we have
m! = 1!× 3!× · · · × (2n− 1)! > (4n)!

and hence m > 4n.

Let p be some prime number between 2n and 4n. Therefore, m! must include p as one of its terms,
and p | m! = RHS.

However, on the left-hand side, all the terms are less than p, and since p is a prime, it must not
divide any term in the left-hand side factorial expansion (since every term in the expansion is less
than p), and hence p ∤ LHS.

But since LHS = RHS this is impossible, and we can deduce that n < 7.

• n = 1, LHS = 1! = 1 and (n,m) = (1, 1) is a solution.

• n = 2, LHS = 1! · 3! = 3! and (n,m) = (2, 3) is a solution.

• n = 3, LHS = 1! · 3! · 5! = 6 · 5! = 6! and (n,m) = (3, 6) is a solution.

• n = 4, LHS = 1! ·3! ·5! ·7! = 6! ·7! = 7! ·6! = 7! · (3 ·2 ·5 ·4 ·3 ·2) = 7! · (2 ·4) · (3 ·3) · (2 ·5) = 10!
and (n,m) = (4, 10) is a solution.

• n = 5, LHS = 1! · 3! · 5! · 7! · 9! = 10! · 9! > 10!, so if m exists, m > 10 and m ≥ 11. Then
11 | RHS = LHS, but this is impossible since 11 > 9, so such m does not exist.

• n = 6, LHS = 1! ·3! ·5! ·7! ·9! ·11! = 10! ·9! ·11! = 11! ·9! ·10! = 12! ·10! ·(9 ·8 ·7 ·5 ·4 ·3) > 12!, so
if m exists, m > 12 and m ≥ 13. Then 13 | RHS = LHS, but this is impossible since 13 > 11,
and so such m does not exist.

Hence, the only possible solutions are

(n,m) ∈ {(1, 1), (2, 3), (3, 6), (4, 10)}.
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2018.2 Question 7

Since |MQ| = µ|QB|, we must have |MQ| = µ
1+µ |MB|, and hence

−−→
MQ =

µ

1 + µ

−−→
MB,

and hence
q−m =

µ

1 + µ
(b−m) .

Similarly,

q− n =
ν

1 + ν
(a− n) .

Since q = q, we have
µ

1 + µ
(b−m) +m =

ν

1 + ν
(a− n) + n,

which rearranges to give
1

1 + µ
m− 1

1 + ν
n =

ν

1 + ν
a− µ

1 + µ
b.

Since m is a scalar multiple of a as M is on the side OA, and n is a scalar multiple of b similarly,
and a and b are linearly independent since OAB forms a triangle, we can conclude that

m =
1 + µ

1
· ν

1 + ν
a,

and hence

m =
(1 + µ)ν

1 + ν
a.

Similarly,

n =
(1 + ν)µ

1 + µ
b.

Since L lies on OB with |OL| = λ|OB|, then we have

l = λb,

and hence
−−→
ML = l−m = λb− (1 + µ)ν

1 + ν
a.

Since
−−→
AN = n− a =

(1 + ν)µ

1 + µ
b− a.

−−→
ML is parallel to

−−→
AN means that the corresponding scalar vectors for a and b are in ratio (since

they are linearly independent), and hence

λ :
(1 + ν)µ

1 + µ
=

(
− (1 + µ)ν

1 + ν

)
: (−1),

and hence

λ =
(1 + µ)ν

1 + ν
· (1 + ν)µ

1 + µ
= µν.

The condition µν < 1 ensured that L lies on OB between O and B (i.e. on the side OB).

Eason Shao Page 228 of 430



STEP Project Year 2018 Paper 2

2018.2 Question 8

1. Since v =
√
y, we have y = v2, and hence

dy

dt
= 2v

dv

dt
,

and hence the original equation reduces to

2v
dv

dt
= αv − βv2,

which gives

2
dv

dt
= α− βv.

Rearranging gives us
dv

α− βv
=

dt

2
,

and hence integrating both sides gives

− 1

β
ln|α− βv| = 1

2
t+ C.

Hence,

ln|α− βv| = −βt

2
+ C ′,

and

α− βv = A exp

(
−βt

2

)
,

and hence

v =
1

β

[
α+A exp

(
−β

2

)]
,

which means

y = v2 =
1

β2

[
α+A exp

(
−βt

2

)]2
.

Since y = 0 when t = 0, we have A = −α, and hence

y1(t) =
α2

β2

[
1− exp

(
−βt

2

)]2
.

2. Let v = 3
√
y in this case, and hence y = v3, we have

dy

dt
= 3v2

dv

dt
,

and hence the original equation reduces to

3v2
dv

dt
= αv2 − βv3,

and hence

3
dv

dt
= α− βv.

Similar to before, this solves to

v =
1

β

[
α+B exp

(
−β

3

)]
,

and hence

y = v3 =
1

β3

[
α+B exp

(
−β

3

)]3
.

Since y = 0 when t = 0, we have B = −α, and hence

y2(t) =
α3

β3

[
1− exp

(
−βt

3

)]3
.
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3. Let α = β = γ. We have

y1(t) =

[
1− exp

(
−γt

2

)]2
, y2(t) =

[
1− exp

(
−γt

3

)]3
.

For t > 0, we have

0 > −γt

3
> −γt

2
> −∞,

and since the exponential function is strictly increasing, we have

1 > exp

(
−γt

3

)
> exp

(
−γt

2

)
> 0,

and hence

1 > 1− exp

(
−γt

2

)
> 1− exp

(
−γt

3

)
> 0.

Hence,

y1(t) =

[
1− exp

(
−γt

2

)]2
>

[
1− exp

(
−γt

3

)]2
>

[
1− exp

(
−γt

3

)]3
= y2(t)

which tells us that the graph of y2 should lie below the graph of y1.

As t → ∞,

exp

(
−γt

2

)
, exp

(
−γt

2

)
→ 0+,

and hence
y1(t), y2(t) → 1−.

At t = 0, y1(t) = y2(t) = 0, and hence by the original differential equation y′1(t) = y′2(t) = 0.

Hence, the graph looks as follows.

y

x
O

y = 1
y = y1(x)

y = y2(x)
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2018.2 Question 12

1. If h consecutive heads are thrown, then the person will earn £h, and the probability of this hap-
pening is ph.

If this did not happen, then the game must have already ended before reaching h heads (since there
must be a tail), and the person will earn nothing.

Hence, the expected earning is E(h) = hph, which gives

E(h) =
hNh

(N + 1)h
.

Notice that
E(h+ 1)

E(h)
=

(h+ 1)Nh+1/(N + 1)h+1

hNh/(N + 1)h
=

(h+ 1)N

h(N + 1)
.

We have
E(h+ 1)

E(h)
− 1 =

(hN +N)− (hN + h)

hN + h
=

N − h

hN + h
,

which shows that E(h + 1) > E(h) when h < N , and E(h + 1) < E(h) when h > N , and
E(h+ 1) = E(h) when h = N .

This means that E(h) will increase until h = N , where E(N) = E(N + 1), and decrease after
h = N + 1.

This means the expected earnings can be maximised when h = N or h = N +1, which shows when
h = N , the earnings is maximised.

2. There are two cases: either the person earns £h (when there are h heads thrown before the game
ends) with some probability (that we would like to find), or the game ends before there are h heads
thrown.

To find the probability in the first case, let there be t cases where a tail appears, and there must be
h cases where a head appears. The final throw must be a head, and the tail must appear singularly
(which means any two consecutive tails must have a head in between), which shows that 0 ≤ t ≤ h.

There are h− 1 heads that are free to ’move’, and t tails have t− 1 gaps in between, which takes
away at least t − 1 heads to separate them. The rest of the h − t heads are free to be within any
of the t+ 1 spaces that are separated by the t tails, which is equivalent of choosing t to be heads
from a total (h− t) + t = h remaining throws.

Therefore, for each t, the number of arrangements there are is(
h

t

)
,

and the probability of this happening is

ph · (1− p)t.

Therefore, the probability desired is

h∑
t=0

(
h

t

)
ph(1− p)t = ph

h∑
t=0

(
h

t

)
1h−t(1− p)t = ph(1 + 1− p)h = ph(2− p)h,

and the expected earnings in terms of h is

E(h) = hph(2− p)h = h

(
N

N + 1

)h(
N + 2

N + 1

)h

=
hNh(N + 2)h

(N + 1)2h

as desired.

When N = 2,

E(h) =
h2h4h

32h
=

h23h

32h
.
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Notice that
E(h+ 1)

E(h)
=

(h+ 1)23h+3/32h+2

h23h/32h
=

8(h+ 1)

9h
,

and hence
E(h+ 1)

E(h)
− 1 =

8− h

9h
,

which shows that E(h+1) > E(h) when h < 8, and E(h+1) < E(h) when h > 8, and E(h+1) =
E(h) when h = 8.

This shows that E(8) = E(9) gives the maximum expected winnings, which is given by

8 · 224

316
=

227

316
.

Since log3 2 ≈ 0.63, we have 2 ≈ 30.63, and hence

227

316
≈ 327·0.63

316
= 327·0.63−16 = 31.01 ≈ 3,

and this shows that the maximum value of expected winnings is approximately £3.
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2018.2 Question 13

This setup gives a Markov Chain. Let the column vector xn represent a state

xn =


An

Bn

Cn

Dn

 ,

and hence we have the components of the column vector must sum to 1. The initial state is defined by

x0 =


1
0
0
0

 ,

and the state transition matrix is

M =


1/2 1/4 0 1/4
1/4 1/2 1/4 0
0 1/4 1/2 1/4
1/4 0 1/4 1/2

 =
1

4


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

 ,

which gives
xn+1 = Mxn.

1. Notice that

x1 = Mx0 =
1

4


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2



1
0
0
0

 =
1

4


2
1
0
1

 ,

and hence A1 = 1
2 , B1 = 1

4 , C1 = 0, D1 = 1
4 .

Also,

x2 = Mx1 =
1

4


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

 · 1
4


2
1
0
1

 =
1

16


6
4
2
4

 =
1

8


3
2
1
2

 ,

and hence A2 = 3
8 , B2 = 1

4 , C2 = 1
8 , D2 = 1

4 .

2. We claim that Bn = Dn for all n by symmetry, and notice that

Bn+1 =
1

4
· (An + 2Bn + Cn) =

1

4
· (An +Bn + Cn +Dn) =

1

4
,

and

Dn+1 =
1

4
· (An + Cn + 2Dn) =

1

4
· (An +Bn + Cn +Dn) =

1

4
,

so that Bn = Dn = 1
4 for all n ≥ 1. (For n = 0, Bn = Dn = 0).

Hence, for n ≥ 1, we have

An+1 =
1

4
(2An +Bn +Dn) =

1

4

(
2An +

1

2

)
=

1

2
An +

1

8
,

which means

An+1 −
1

4
=

1

2

(
An − 1

4

)
,

which shows that An − 1
4 is a geometric sequence with common ratio 1

2 . The initial term of the
geometric sequence is A1 − 1

4 = 1
4 , and hence

An − 1

4
=

1

2n+1
,
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which shows An = 1
4 + 1

2n+1 for n ≥ 1.

Also, Cn has the same inductive relationship as An, the only difference being that the initial term
is C1 − 1

4 = − 1
4 , and hence

Cn − 1

4
= − 1

2n+1
,

which shows Cn = 1
4 − 1

2n+1 for n ≥ 1.

Hence, we have

xn =


An

Bn

Cn

Dn

 =

{
(1, 0, 0, 0)

⊺
, n = 0,(

1
4 + 1

2n+1 ,
1
4 ,

1
4 − 1

2n+1 ,
1
4

)⊺
, otherwise.
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2018.3 Question 1

1. By differentiation with respect to β, we have

f ′(β) = 1 +
1

β2
+

2

β3
.

If f ′(t) = 0, we must have
t3 + t+ 2 = 0.

Therefore,
(t+ 1)(t2 − t+ 2) = 0,

and hence the only real root to this is t = −1, since (−1)2 − 2 · 4 < 0.

This means the only stationary point of y = f(β) is (−1, f(−1) = −1).

For the limiting behaviour of the function, we first look at the case where β > 0. As β → ∞, we
have f(β) → β from below. As β → 0+, we have f(β) → − 1

β − 1
β2 → −∞.

When β < 0, we use the substitution t = − 1
β to make the behaviours more convincing, and hence

f(β) = β + t− t2.

As β → 0−, we have t → ∞, and f(β) → t − t2 → −∞. As β → −∞, we have t → 0+, and
f(β) → β from above, since t− t2 = t(1− t) > 0 when 0 < t < 1.

This means the curve y = f(β) is as below.

x

y

O

y = f(x)

y = x

(−1,−1)

Similarly, by differentiation with respect to β, we have

g′(β) = 1− 3

β2
+

2

β3
.

If g′(t) = 0, we must have
t3 − 3t+ 2 = 0.

Therefore,
(t− 1)2(t+ 2) = 0,
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and hence the real roots to this is t = 1 and t = −2.

This means the stationary points of y = g(β) is (1, g(1) = 3) and (−2, g(−2) = − 15
4 ).

For the limiting behaviour of the function, we first look at the case where β > 0. We consider the
substitution t = − 1

β to make the behaviours more convincing, and hence

g(β) = β − 3t− t2.

As β → ∞, t → 0−, and hence f(β) → β from below, since −3t−t2 = −t(t+3) > 0 for −3 < t < 0.
As β → 0+, t → −∞, and hence f(β) → −3t− t2 → −∞.

When β < 0, we have as β → 0−, f(β) → −∞. As β → −∞, f(β) → β from below.

This means the curve y = g(β) is as below.

x

y

O

y = g(x)

y = x

(1, 3)

(
−2,− 15

4

)

2. By Vieta’s Theorem, we have u+ v = −α, and uv = β. Hence,

u+ v +
1

uv
= −α+

1

β
,

and
1

u
+

1

v
+ uv =

u+ v

uv
+ uv = −α

β
+ β.

3. By the given condition, we have

−α+
1

β
= −1 ⇐⇒ α = 1 +

1

β
.
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Hence,

1

u
+

1

v
+ uv = −α

β
+ β

= −
1 + 1

β

β
+ β

=
β2 − 1− 1

β

β

= β − 1

β
− 1

β2

= f(β).

Also, since u, v are both real, we have

α2 − 4β =

(
1 +

1

β

)2

− 4β

= 1 +
2

β
+

1

β2
− 4β

=
−4β3 + β2 + 2β + 1

β2

≥ 0.

Multiplying both sides by −β2 (which flips the sign) gives

4β3 − β2 − 2β − 1 ≤ 0

(β − 1)(4β2 + 3β + 1) ≤ 0.

This cubic has exactly one real root β = 1, so the solution to this inequality is β ≤ 1 and β ̸= 0.

Notice that f is increasing on (0, 1] ⊂ (0,∞). Therefore, for β > 0,

f(β) ≤ f(1) = 1− 1− 1 = −1.

When β < 0, we have
f(β) ≤ f(−1) = −1.

So for the range of β in this question, we always have f(β) ≤ −1. But we also have 1
u+

1
v +uv ≤ −1

as shown before. These gives us exactly our desired statement.

4. By the given condition, we have

−α+
1

β
= 3 ⇐⇒ α = −3 +

1

β
.

Hence,

1

u
+

1

v
+ uv = −α

β
+ β

= −
−3 + 1

β

β
+ β

= β +
3

β
− 1

β2

= g(β).

Also, since u, v are both real, we have β ≤ 1 and β ̸= 0 as well.

g must be increasing on (0, 1]. Hence, for β > 0, we have

g(β) ≤ g(1) = 3.
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When β < 0, we have

g(β) ≤ g(−2) = −15

4
.

Since 3 > − 15
4 , we can conclude that the maximum value of 1

u + 1
v + uv is 3, and it is taken when

β = 1, which corresponds to α = −2.
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2018.3 Question 2

1. Notice that

dyn
dx

=
d(−1)n 1

z
dnz
dxn

dx

= (−1)n

[
d 1
z

dx
· d

nz

dxn
+

1

z
·
d dnz
dxn

dx

]

= (−1)n
[
2x

z
· d

nz

dxn
+

1

z
· d

n+1z

dxn+1

]
= 2x · (−1)n

1

z

dnz

dxn
− (−1)n+1 1

z

dn+1z

dxn+1

= 2xyn − yn+1,

as desired.

2. We first look at the base case where n = 1. What is desired is

y2 = 2xy1 − 2y0.

We have y0 = 1,

y1 = (−1)1
1

e−x2

de−x2

dx
= −ex

2

(−2x)e−x2

= 2x,

and

y2 = 2xy1 −
dy1
dx

= 2x · 2x− 2 = 4x2 − 2.

Hence,
2xy1 − 2y0 = 2x · 2x− 2 · 1− 4x2 − 2 = y2,

so the base case is satisfied.

Now assume this is true for some n = k ≥ 1, i.e.

yk+1 = 2xyk − 2kyk−1.

We have

yk+2 = 2xyk+1 −
dyk+1

dx

= 2xyk+1 −
d (2xyk − 2kyk−1)

dx

= 2xyk+1 − 2yk − 2x
dyk
dx

+ 2k
dyk−1

dx
= 2xyk+1 − 2yk − 2x(2xyk − yk+1) + 2k(2xyk−1 − yk)

= 2xyk+1 − 2yk − 4x2yk + 2xyk+1 + 4kxyk−1 − 2kyk

= 4xyk+1 − 2(2x2 + k + 1)yk + 4kxyk−1

= 4xyk+1 − 2(2x2 + k + 1)yk + 4kx · 2xyk − yk+1

2k

= 4xyk+1 − 2(2x2 + k + 1)yk + 2x(2xyk − yk+1)

= 2xyk+1 − 2(k + 1)yk,

which is exactly the statement for n = k + 1.

Hence, by the principle of mathematical induction, we have yn+1 = 2xyn − 2nyn−1 for all n ≥ 1.

We have

LHS = y2n+1 − ynyn+2

= y2n+1 − yn(2xyn+1 − 2(n+ 1)yn)

= y2n+1 − 2xynyn+1 + 2(n+ 1)y2n
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and

RHS = 2n(y2n − yn−1yn+1) + 2y2n

= 2n

(
y2n − 2xyn − yn+1

2n
yn+1

)
+ 2y2n

= 2ny2n − (2xyn − yn+1) yn+1 + 2y2n

= 2ny2n − 2xynyn+1 + y2n+1 + 2y2n

= y2n+1 − 2xynyn+1 + 2(n+ 1)y2n.

3. This can be shown by induction on n. The base case for n = 1 is

y21 − y0y2 = (2x)2 − 1 · (4x2 − 2) = 2 > 0

is true.

Now assume the statement is true for n = k ≥ 1, i.e.

y2k − yk−1yk+1 > 0.

We have

y2k+1 − ykyk+2 = 2n(y2k − yk−1yk + 1) + 2y2n

> 2n · 0 + y2n

= 0 + y2n

≥ 0,

which is the statement for n = k + 1.

Hence, by the principle of mathematical induction, we have y2n − yn−1yn+1 > 0 for all n ≥ 1.
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2018.3 Question 3

Notice that

xa(xb(xcy)′)′ = xa(xb(cxc−1y + xcy′))′

= xa
[
xb+c−1 (cy + xy′)

]′
= xa

[
(b+ c− 1)xb+c−2 (cy + xy′) + xb+c−1 (cy′ + y′ + xy′′)

]
= xa+b+c−2 [(b+ c− 1) (cy + xy′) + x (cy′ + y′ + xy′′)]

= xa+b+c−2
[
x2y′′ + (b+ 2c)xy′ + (b+ c− 1)cy

]
.

Comparing this with the left-hand side of the original equation, we must have
a+ b+ c− 2 = 0,

b+ 2c = 1− 2p,

(b+ c− 1)c = p2 − q2.

The second equation gives
b = 1− 2p− 2c,

and putting this into the third equation gives

(1− 2p− 2c+ c− 1)c = p2 − q2,

and hence
c2 + 2pc+ p2 − q2 = 0.

This gives
(c+ (p− q))(c+ (p+ q)) = 0,

and hence
c1 = −p+ q, c2 = −p− q.

Putting this back, we get

b1 = 1− 2p− 2(−p+ q) = 1− 2q, b2 = 1− 2p− 2(−p− q) = 1 + 2q,

and since a = 2− b− c from the first equation, we have

a1 = 2− (1− 2q)− (−p+ q) = 1 + p+ q

and
a2 = 2− (1 + 2q)− (−p− q) = 1 + p− q

Hence, the solutions are 
a = p± q + 1,

b = ∓2q + 1,

c = −p± q.

1. In the case where f(x) = 0. We must have

xa
(
xb(xcy)′

)′
= 0,

and hence (
xb(xcy)′

)′
= 0.

Therefore, we must have by integration

xb(xcy)′ = C1

for some (real) constant C1.

Hence,
(xcy)′ = C1x

−b.

There are two cases here:
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(a) When b = 1 i.e. q = 0, the right-hand side is C1x
−1, and the left-hand side is (xcy)′.

Integrating both sides give
xcy = C1 lnx+ C2

for some (real) constant C2.

Hence,
y = x−c(C1 lnx+ C2)

for some (real) constants C1, C2.

When q = 0, c = −p, and hence

y = xp(C1 lnx+ C2).

(b) When b ̸= 1 i.e. q ̸= 0, integrating both sides give

xcy =
C1x

−b+1

−b+ 1
+ C2

for some (real) constant C2.

Hence,

y = x−c

(
C1x

−b+1

−b+ 1
+ C2

)
for some (real) constant C1, C2.

Hence,

y = x−(−p±q)

(
C1x

−(∓2q+1)+1

−(∓2q + 1) + 1
+ C2

)
= xp∓q

(
C1x

±2q

±2q
+ C2

)
.

=
C1

±2q
xp±q + C2x

p∓q

= C3x
p±q + C2x

p∓q,

for some (real) constant C2, C3.

2. This is when q = 0 and f(x) = xn. We have a = p + 1, b = 1 and c = −p, and the original
differential equation reduces to

xp+1
(
x
(
x−py

)′)′
= xn,

and hence (
x
(
x−py

)′)′
= xn−p−1.

There are two cases here:

(a) If n− p− 1 = −1, i.e. n = p, we have, by integration,

x
(
x−py

)′
= lnx+ C1.

This gives (
x−py

)′
=

lnx

x
+

C1

x
,

and hence by integration

x−py =
(lnx)2

2
+ C1 lnx+ C2.

This solves to

y =
xp(lnx)2

2
+ C1x

p lnx+ C2x
p.
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(b) If n− p− 1 ̸= −1, i.e. n ̸= p, we have

x
(
x−py

)′
=

xn−p

n− p
+ C1.

This gives (
x−py

)′
=

xn−p−1

n− p
+

C1

x
.

Since n− p− 1 ̸= −1, by integration we have

x−py =
xn−p

(n− p)2
+ C1 lnx+ C2,

and hence

y =
xn

(n− p)2
+ C1x

p lnx+ C2x
p.
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2018.3 Question 4

The hyperbola has parametric equation {
x = a sec θ,

y = b tan θ.

Hence, by differentiation, we have

dy

dx
=

dy
dθ
dx
dθ

=
b sec2 θ

a sec θ tan θ

=
b cos θ

a sin θ cos θ

=
b

a sin θ
.

The tangent to the hyperbola at P will be

y − b tan θ =
b

a sin θ
(x− a sec θ),

which simplifies to
ay sin θ − ab tan θ sin θ = bx− ab sec θ,

and hence
bx− ay sin θ = ab(sec θ − tan θ sin θ).

Notice that

sec θ − tan θ sin θ =
1− sin2 θ

cos θ
=

cos2 θ

cos θ
= cos θ,

and so the equation of the tangent is

bx− ay sin θ = ab cos θ,

exactly as desired.

1. Let x
a = y

b = s for S, we have x = as and y = bs, and hence

abs− abs sin θ = ab cos θ,

which gives

s =
cos θ

1− sin θ
,

and hence

S

(
a

cos θ

1− sin θ
, b

cos θ

1− sin θ

)
.

Let x
a = −y

b = t for T , we have x = at and y = −bt, and hence

abt+ abt sin θ = ab cos θ,

which gives

t =
cos θ

1 + sin θ
,

and hence

T

(
a

cos θ

1 + sin θ
,−b

cos θ

1 + sin θ

)
.
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We have

a cos θ
1−sin θ + a cos θ

1+sin θ

2
=

a cos θ

2

(
1

1− sin θ
+

1

1 + sin θ

)
=

a cos θ

2

(
2

cos2 θ

)
=

a

cos θ
= a sec θ,

and

a cos θ
1−sin θ − b cos θ

1+sin θ

2
=

b cos θ

2

(
1

1− sin θ
− 1

1 + sin θ

)
=

b cos θ

2

(
2 sin θ

cos2 θ

)
=

b sin θ

cos θ
= b tan θ.

This means the midpoint of ST is (a sec θ, b tan θ), which is exactly P .

2. Since the tangents are perpendicular, that means

dy

dx

∣∣∣∣
θ

· dy

dx

∣∣∣∣
φ

= −1,

and hence
b

a sin θ
· b

a sinφ
= −1,

which means
b2 = −a2 sin θ sinφ.

The two tangents are
bx− ay sin θ = ab cos θ

and
bx− ay sinφ = ab cosφ.

Since bx = bx, we have
ay sin θ + ab cos θ = ay sinφ+ ab cosφ,

and hence
y(sin θ − sinφ) = b(cosφ− cos θ),

which gives

y = b · cosφ− cos θ

sin θ − sinφ
.

Hence,

x =
ab cos θ + ay sin θ

b

=
a

b

(
b cos θ + b sin θ

cosφ− cos θ

sin θ − sinφ

)
= a

(
cos θ + sin θ

cosφ− cos θ

sin θ − sinφ

)
= a

cos θ(sin θ − sinφ) + sin θ(cosφ− cos θ)

sin θ − sinφ

= a · sin θ cosφ− cos θ sinφ

sin θ − sinφ

= a · sin(θ − φ)

sin θ − sinφ
.
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This means 
x2 = a2 · sin2(θ − φ)

(sin θ − sinφ)
2 ,

y2 = b2 · (cosφ− cos θ)
2

(sin θ − sinφ)
2 = −a2 sin θ sinφ · (cosφ− cos θ)

2

(sin θ − sinφ)
2 .

Notice that
a2 − b2 = a2 + a2 sin θ sinφ = a2(1 + sin θ sinφ).

Hence,

x2 + y2 = a2

[
sin2(θ − φ)

(sin θ − sinφ)
2 − sin θ sinφ · (cosφ− cos θ)

2

(sin θ − sinφ)
2

]

=
a2

(sin θ − sinφ)2

[
sin2(θ − φ)− sin θ sinφ (cosφ− cos θ)

2
]
.

What is desired is to show

(1 + sin θ sinφ)(sin θ − sinφ)2 = sin2(θ − φ)− sin θ sinφ (cosφ− cos θ)
2
.

We have

RHS = (sin θ cosφ− cos θ sinφ)2 − sin θ sinφ(cos2 φ+ cos2 θ − 2 cosφ cos θ)

= sin2 θ cos2 φ+ cos2 θ sin2 φ− 2 sin θ cos θ sinφ cosφ

− sin θ sinφ cos2 φ− sin θ sinφ cos2 θ + 2 sin θ cos θ sinφ cosφ

= sin θ cos2 φ(sin θ − sinφ) + cos2 θ sinφ(sinφ− sin θ)

= (sin θ cos2 φ− cos2 θ sinφ)(sin θ − sinφ).

Therefore, what is left to prove is that

(1 + sin θ sinφ)(sin θ − sinφ) = sin θ cos2 φ− cos2 θ sinφ

Notice that

LHS = sin θ − sinφ+ sin2 θ sinφ− sin θ sin2 φ

= sin θ(1− sin2 φ)− sinφ(1− sin2 θ)

= sin θ cos2 φ− sinφ cos2 θ

= RHS.

This shows that

1

(sin θ − sinφ)2

[
sin2(θ − φ)− sin θ sinφ (cosφ− cos θ)

2
]
= 1 + sin θ sinφ,

and hence
x2 + y2 = a2 − b2,

as desired.
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2018.3 Question 5

1. First, we notice that

Gk+1
k+1 =

k+1∏
t=1

at = ak+1G
k
k,

and hence

Gk+1 =
(
ak+1G

k
k

) 1
k+1 .

Similarly, notice that

(k + 1)Ak+1 =

k+1∑
t=1

at = ak+1 + kAk.

Hence,

(k + 1) (Ak+1 −Gk+1) ≥ k (Ak −Gk) ,

ak+1 + kAk − (k + 1)
(
ak+1G

k
k

) 1
k+1 ≥ kak − kGk,

ak+1 + kGk ≥ (k + 1)a
1

k+1

k+1G
k

k+1

k .

Dividing both sides by Gk, we have

ak+1

Gk
+ k ≥ (k + 1)a

1
k+1

k+1G
− 1

k+1

k ,

λk+1
k + k ≥ (k + 1)

(
ak+1

Gk

) 1
k+1

,

λk+1
k + k ≥ (k + 1)λk,

λk+1
k − (k + 1)λk + k ≥ 0,

as desired. (Notice that the condition for the equal sign is equivalent as well.)

2. By differentiation, we have

f ′(x) = (k + 1)xk − (k + 1) = (k + 1)(xk − 1).

When x ∈ (0, 1), xk ∈ (0, 1), f ′(x) < 0, and hence f is strictly decreasing.

When x ∈ (1,∞), xk ∈ (1,∞), f ′(x) > 0, and hence f is strictly increasing.

Hence, f(1) is the minimum for f on (0,∞). This means for all x ∈ (0,∞), we have

f(x) ≥ f(1) = 1k+1 − (k + 1) + k = 0,

taking the equal sign if and only if x = 1.

3. (a) We show this by induction. For the base case n = 1, A1 = G1 = a1, so naturally An ≥ Gn is
satisfied.

Assume that the statement holds for some n = k, i.e. Ak ≥ Gk, Ak −Gk ≥ 0. Since k > 0 as
well, we must have

(k + 1)(Ak+1 −Gk+1) ≥ k(Ak −Gk) ≥ 0.

We also have k + 1 > 0, and hence

Ak+1 −Gk+1 ≥ 0 ⇐⇒ Ak+1 ≥ Gk+1,

meaning the statement holds for n = k + 1 as well.

Hence, by the principle of mathematical induction, we must have An ≥ Gn for all n ∈ N,
which finishes our proof.
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(b) We show this by induction. For the base case n = 1, this condition is naturally satisfied.

Assume that the statement holds for some n = k, i.e. Ak = Gk =⇒ a1 = a2 = · · · = ak. We
show this for n = k + 1. If Ak+1 = Gk+1, then we must have

k(Ak −Gk) ≤ (k + 1)(Ak+1 −Gk+1) = 0,

but since Ak ≥ Gk, we must have then Ak = Gk, and hence the equal sign in the inequality
being taken.

This must mean that

λk =

(
ak+1

Gk

) 1
k+1

= 1,

and hence
ak+1 = Gk.

At the same time, since Ak = Gk, we must have a1 = a2 = · · · = ak, and hence Gk = a1 =
a2 = · · · = ak. Therefore, we must also have

a1 = a2 = · · · = ak = ak+1,

which proves the statement that Ak+1 = Gk+1 implies a1 = a2 = · · · = ak = ak+1, which is
the original statement for n = k + 1.

Hence, by the principle of mathematical induction, we must have An = Gn implies a1 = a2 =
· · · = an for all n ∈ N, which finishes our proof.
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2018.3 Question 6

1. Since A,Q,C lie on a straight line, AQ = λAC for some λ ∈ R. This means

q − a = λ(c− a),

and hence
q − a

c− a
= λ ∈ R,

as required.

Hence, we must have
q − a

c− a
=

(
q − a

c− a

)∗

=
q∗ − a∗

c∗ − a∗
.

Cross-multiplying the terms out give

(c− a)(q∗ − a∗) = (c∗ − a∗)(q − a)

exactly as desired.

Substituting in a∗ = 1/a and c∗ = 1/c, we have

(c− a)

(
q∗ − 1

a

)
=

(
1

c
− 1

a

)
(q − a),

and expanding the brackets gives

cq∗ − aq∗ − c

a
+ 1 =

q

c
− a

c
− q

a
+ 1,

and hence
cq∗ − aq∗ − c

a
=

q

c
− a

c
− q

a
.

Multiplying by ac on both sides gives us

ac2q∗ − a2cq∗ − c2 = aq − a2 − cq,

and hence
ac(c− a)q∗ = (a− c)q − (a2 − c2) = (a− c)q − (a− c)(a+ c).

We can divide through (a− c) on both sides since a ̸= c. Hence,

0 = q − (a+ c) + acq∗,

and hence
acq∗ + q = a+ c,

as desired.

2. By part 1, we must have
acq∗ + q = a+ c, bdq∗ + q = b+ d.

Since q = q, we have
acq∗ − (a+ c) = bdq∗ − (b+ d),

and rearranging gives
(ac− bd)q∗ = (a+ c)− (b+ d),

exactly as desired.

We also have q∗ = q∗, and hence
a+ c− q

ac
=

b+ d− q

bd
,

which gives
(bd)(a+ c− q) = (ac)(b+ d− q),
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and rearranging gives
(ac− bd)q = ac(b+ d)− bd(a+ c).

Summing this with previously, we have

(ac− bd)(q + q∗) = (a+ c)− (b+ d) + ac(b+ d)− bd(a+ c).

We notice that

(a+ c)− (b+ d) + ac(b+ d)− bd(a+ c) = a+ c− b− d+ abc+ acd− abd− bcd

= a− b+ acd− bcd+ c− d+ abc− abd

= (a− b)(1 + cd) + (c− d)(1 + ab),

and hence
(ac− bd)(q + q∗) = (a− b)(1 + cd) + (c− d)(1 + ab),

exactly as desired.

3. By part 1, we must have
p+ abp∗ = a+ b.

Since p is real, p = p∗, and hence
(1 + ab)p = a+ b,

as desired.

Similarly, we must have
(1 + cd)q = c+ d,

and putting this back into the result from part 2, we have

(ac− bd)(q + q∗) =
(a− b)(c+ d)

p
+

(c− d)(a+ b)

p
,

and hence since ac− bd ̸= 0, we have

p(q + q∗) =
(a− b)(c+ d) + (c− d)(a+ b)

ac− bd

=
ac+ ad− bc− bd+ ac+ bc− ad− bd

ac− bd

=
2ac− 2bd

ac− bd

= 2,

as desired.
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2018.3 Question 7

1. We have

(cot θ + i)2n+1 − (cot θ − i)2n+1

2i

=
(cos θ + i sin θ)

2n+1 − (cos θ − i sin θ)2n+1

2i sin2n+1 θ

=
(cos(2n+ 1)θ + i sin(2n+ 1)θ)− (cos(2n+ 1)θ − i sin(2n+ 1)θ)

2i sin2n+1 θ

=
2i sin(2n+ 1)θ

2i sin2n+1 θ

=
sin(2n+ 1)θ

sin2n+1 θ
,

as desired.

By applying the binomial expansion formula on the numerator, we have

(cot θ + i)2n+1 − (cot θ − i)2n+1

=

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i2n+1−t −

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · (−i)2n+1−t

=

2n+1∑
t=0

(
2n+ 1

t

)
cott θ ·

[
i2n+1−t − (−i)2n+1−t

]
= (−1)n · i ·

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i−t ·

[
1− (−1)1−t

]
.

Due to the existence of the final term, this means that only terms with even t will retain (give a
2), and odd ts will cancel. Hence,

(cot θ + i)2n+1 − (cot θ − i)2n+1

= (−1)n · i ·
2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i−t ·

[
1− (−1)1−t

]
= (−1)n · 2i ·

n∑
t=0

(
2n+ 1

2t

)
cot2t θ · i−2t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2t

)
cot2t θ · (−1)t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2n− 2t+ 1

)
cot2t θ · (−1)t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)n−t

= 2i ·
n∑

t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)t.

Hence,

sin(2n+ 1)θ

sin2n+1 θ

=
2i ·
∑n

t=0

(
2n+1
2t+1

)
cot2(n−t) θ · (−1)t

2i

=

n∑
t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)t.
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The left-hand side of the original equation is

n∑
t=0

(
2n+ 1

2t+ 1

)
xn−t · (−1)t.

Let x = cot2 θ, we have

sin(2n+ 1)θ

sin2n+1 θ
=

n∑
t=0

(
2n+ 1

2t+ 1

)
xn−t · (−1)t = 0.

Therefore, we have sin(2n+ 1)θ = 0, and hence (2n+ 1)θ = mπ for m ∈ Z.
To avoid duplicate solutions for x = cot2 θ, we restrict θ ∈

(
0, π

2

]
, and hence (2n + 1)θ ∈(

0,
(
n+ 1

2

)
π
]
, and hence m = 1, 2, . . . , n.

This solves to θ = mπ
2n+1 for m = 1, 2, . . . , n, and hence this gives exactly

x = cot2
(

mπ

2n+ 1

)
.

2. By Vieta’s Theorem, we will have

n∑
m=1

xm = −
−
(
2n+1

3

)(
2n+1

1

) =
(2n+ 1)(2n)(2n− 1)

(2n+ 1) · 3 · 2 · 1
=

n(2n− 1)

3
,

and since we have

xm = cot2
(

mπ

2n+ 1

)
,

we have
n∑

m=1

cot2
(

mπ

2n+ 1

)
=

n(2n− 1)

3
.

3. For 0 < θ < 1
2π, we have 0 < sin θ < θ < tan θ, and squaring this gives

0 < sin2 θ < θ2 < tan2 θ,

and flipping to the reciprocal gives

0 < cot2 θ <
1

θ2
< csc2 θ = 1 + cot2 θ,

which proves exactly what is desired.

Therefore, we have

n∑
m=1

cot2
(

mπ

2n+ 1

)
<

n∑
m=1

1(
mπ

2n+1

)2 <

n∑
m=1

[
1 + cot2

(
mπ

2n+ 1

)]
,

and hence
n(2n− 1)

3
<

n∑
m=1

(2n+ 1)2

m2π2
<

2n(n+ 1)

3
,

and hence
n(2n− 1)π2

3(2n+ 1)2
<

n∑
m=1

1

m2
<

2n(n+ 1)π2

3(2n+ 1)2
.

Take the limit as n → ∞, the strict inequalities become weak, and hence

lim
n→∞

n(2n− 1)π2

3(2n+ 1)2
≤

∞∑
m=1

1

m2
≤ lim

n→∞

2n(n+ 1)π2

3(2n+ 1)2
,
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and hence
2π2

3 · 22
≤

∞∑
m=1

1

m2
≤ 2nπ2

3 · 22
,

and therefore
π2

6
≤

∞∑
m=1

1

m2
≤ π2

6
,

and hence
∞∑

m=1

1

m2
=

π2

6
,

as desired.
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2018.3 Question 8

1. Using the substitution t = 1
x , we have

dt

dx
= − 1

x2
=⇒ dx = −x2 dt = −dt

t2
,

and when x → 0+, t → ∞, and when x = 1, t = 1. Hence,

I =

∫ 1

0

f(x−1)

1 + x
dx

=

∫ ∞

1

f(t)

1 + t−1
·
(
−dt

t2

)
=

∫ ∞

1

f(t) dt

t(1 + t)

=

∫ 2

1

f(t) dt

t(1 + t)
+

∫ 3

2

f(t) dt

t(1 + t)
+

∫ 4

3

f(t) dt

t(1 + t)
+ · · ·

=

∞∑
n=1

∫ n+1

n

f(t) dt

t(1 + t)
,

as desired.

Since f(x) = f(x+ 1) for all x, we must have that f(x) = f(x+ n) for all x and integers n. Also,
we have

1

y(1 + y)
=

1

y
− 1

1 + y
.

Hence,

I =

∞∑
n=1

∫ n+1

n

f(t) dt

t(1 + t)

=

∞∑
n=1

∫ 1

0

f(n+ t) dt

(n+ t)(n+ t+ 1)

=

∞∑
n=1

∫ 1

0

f(t) ·
[

1

n+ t
− 1

n+ t+ 1

]
dt

=

∞∑
n=1

∫ 1

0

f(t) dt

n+ t
−

∞∑
n=1

∫ 1

0

f(t) dt

n+ t+ 1

=

∞∑
n=1

∫ 1

0

f(t) dt

n+ t
−

∞∑
n=2

∫ 1

0

f(t) dt

n+ t

=

∫ 1

0

f(t) dt

1 + t
.

2. For the first integral, simply consider f(x) = {x}, and we can immediately see that f(x) has period
of 1 from the definition. Hence,∫ 1

0

{x−1}
1 + x

dx =

∫ 1

0

f(x−1)

1 + x
dx =

∫ 1

0

f(x)

1 + x
dx =

∫ 1

0

{x}
1 + x

dx.
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Since for 0 < x < 1, we have {x} = x, and hence∫ 1

0

{x−1}
1 + x

dx =

∫ 1

0

{x}
1 + x

dx

=

∫ 1

0

x

1 + x
dx

=

∫ 1

0

(
1− 1

1 + x

)
dx

= 1− [ln(1 + x)]
1
0

= 1− (ln(2)− ln(1))

= 1− ln 2.

For the second integral, we let g(x) = {2x}, and we can see that g(x) has a period of 1
2 , and hence

it also has a period of 1. Hence,∫ 1

0

{2x−1}
1 + x

dx =

∫ 1

0

g(x−1)

1 + x
dx =

∫ 1

0

g(x)

1 + x
dx =

∫ 1

0

{2x}
1 + x

dx.

We split this integral into two parts, [0, 0.5] and [0.5, 1].

∫ 1

0

{2x−1}
1 + x

dx =

∫ 1

0

{2x}
1 + x

dx

=

∫ 0.5

0

{2x}
1 + x

dx+

∫ 1

0.5

{2x}
1 + x

dx

=

∫ 0.5

0

2x

1 + x
dx+

∫ 1

0.5

2x− 1

1 + x
dx

=

∫ 0.5

0

[
2− 2

1 + x

]
dx+

∫ 1

0.5

[
2− 3

1 + x

]
dx

= 1− 2 [ln(1 + x)]
0.5
0 + 1− 3 [ln(1 + x)]

1
0.5

= 2− 2 ln 1.5 + 2 ln 1− 3 ln 2 + 3 ln 1.5

= 2− 3 ln 2 + ln 1.5

= 2− 3 ln 2 + ln 3− ln 2

= 2− 4 ln 2 + ln 3.
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2018.3 Question 12

1. P(Yk) ≤ y is the probability that there is at least k numbers that are less than equal to y.

If there are k ≤ m ≤ n numbers less than or equal to y, then there must be n−m numbers greater
than or equal to y. The probability of the first thing happening for each number is y, and for the
second thing happening for each number is 1 − y. We also have to choose m numbers from the n
to make them less than or equal to y. Therefore,

P(Yk ≤ y) =

n∑
m=k

(
n

m

)
ym(1− y)n−m.

2. We have

m

(
n

m

)
= m · n!

m!(n−m)!
=

n!

(m− 1)!(n−m)!
= n · (n− 1)!

(m− 1)!(n−m)!
= n

(
n− 1

m− 1

)
.

We have

(n−m)

(
n

m

)
= (n−m) · n!

m!(n−m)!
=

n!

m!(n−m− 1)!
= n · (n− 1)!

m!(n−m− 1)!
= n

(
n− 1

m

)
.

The cumulative distribution function FYk
is

FYk
(y) =

n∑
m=k

(
n

m

)
ym(1− y)n−m.

Therefore, the probability density function fYk
is

fYk
(y) = F ′

Yk
(y)

=

n∑
m=k

(
n

m

)[
mym−1(1− y)n−m − (n−m)ym(1− y)n−m−1

]
=

n∑
m=k

ym−1(1− y)n−m−1

[
m

(
n

m

)
(1− y)− (n−m)

(
n

m

)
y

]

= n

[
n∑

m=k

(
n− 1

m− 1

)
ym−1(1− y)n−m −

n−1∑
m=k

(
n− 1

m

)
ym(1− y)n−m−1

]

= n

[
n∑

m=k

(
n− 1

m− 1

)
ym−1(1− y)n−m −

n∑
m=k+1

(
n− 1

m− 1

)
ym−1(1− y)n−m

]

= n

(
n− 1

k − 1

)
yk−1(1− y)n−k.

Since Yk ∈ [0, 1], we must have ∫ 1

0

fYk
(y) dy = 1,

and hence

n

(
n− 1

k − 1

)∫ 1

0

yk−1(1− y)n−k dy = 1,

and therefore we have ∫ 1

0

yk−1(1− y)n−k dy =
1

n
(
n−1
k−1

) .
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3. By the definition of the expectation,

E(Yk) =

∫ 1

0

yfYk
(y) dy

= n

(
n− 1

k − 1

)∫ 1

0

yk(1− y)n−k dy

= n

(
n− 1

k − 1

)
· 1

(n+ 1)
(
n
k

)
=

n · (n−1)!
(k−1)!(n−k)!

(n+ 1) · n!
k!(n−k)!

=

n!
(k−1)!(n−k)!

(n+1)n!
k(k−1)!(n−k)!

=
k

n+ 1
.
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2018.3 Question 13

By the definition of a probability generating function, we have

G(1) =

∞∑
n=0

P(X = n), and G(−1) =

∞∑
n=0

(−1)n P(X = n).

Hence,

G(1) +G(−1) =

∞∑
n=0

[1 + (−1)n] P(X = n).

When n is odd, 1 + (−1)n = 0. When n is even, 1 + (−1)n = 2.
This means

G(1) +G(−1) = 2

∞∑
n=0

P(X = 2n),

which gives

1

2
(G(1) +G(−1)) =

∞∑
n=0

P(X = 2n) = P(X = 0 or X = 2 or X = 4 . . .).

Since X ∼ Po(λ), we have

P(X = x) = e−λλ
x

x!
,

and hence the probability generating function for X, G(t), must satisfy

G(t) =

∞∑
n=0

P(X = n) · tn

=

∞∑
n=0

e−λλ
n

n!
· tn

= e−λ
∞∑

n=0

(λt)n

n!

= e−λ · eλt

= e−λ(1−t).

1. Consider G(t) +G(−t). By definition, we have

G(t) =

∞∑
n=0

P(X = n)tn, G(−t) =

∞∑
n=0

(−1)n P(X = n)tn,

and hence

G(t) +G(−t) =

∞∑
n=0

(1 + (−1)n) P(X = n)tn = 2

∞∑
n=0

P(X = 2n)t2n.

Let H(t) be the probability generating function of Y , we have

H(t) =

∞∑
n=0

P(Y = n) · tn

=

∞∑
n=0

P(Y = 2n) · t2n

=

∞∑
n=0

kP(X = 2n) · t2n

=
k

2
(G(t) +G(−t)) .
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To find k, we must have H(1) = 1. Hence,

1 =
k

2
(G(1) +G(−1)) =

k

2

(
e−λ(1−1) + e−λ(1+1)

)
=

k

2

(
1 + e−2λ

)
,

which gives

k =
2

1 + e−2λ
=

2eλ

eλ + e−λ
=

eλ

coshλ
.

Hence,

H(t) =
k

2
(G(t) +G(−t))

=
eλ

2 coshλ

(
e−λ(1−t) + e−λ(1+t)

)
=

1

coshλ

eλt + e−λt

2

=
coshλt

coshλ
.

Differentiating this with respect to t, we have

H ′(t) =
λ sinhλt

coshλ
,

and hence

E(Y ) = H ′(1) =
λ sinhλ · 1
coshλ

= λ tanhλ.

Since −1 < tanhλ < 1, we have λ tanhλ < λ, and so E(Y ) < λ for λ > 0.

2. Consider G(t) +G(−t) +G(it) +G(−it). By definition, we have

G(t) +G(−t) +G(it) +G(−it) =

∞∑
n=0

(1 + (−1)n + in + (−i)n) P(X = n) · tn.

Let m be an integer. Consider the following four cases:

• n = 4m, 1 + (−1)n + in + (−i)n = 1 + 1 + 1 + 1 = 4.

• n = 4m+ 1, 1 + (−1)n + in + (−i)n = 1 + (−1) + i+ (−i) = 0.

• n = 4m+ 2, 1 + (−1)n + in + (−i)n = 1 + 1 + (−1) + (−1) = 0.

• n = 4m+ 3, 1 + (−1)n + in + (−i)n + 1 + (−1) + (−i) + i = 0.

Hence,

G(t) +G(−t) +G(it) +G(−it) = 4

∞∑
n=0

P(X = 4n) · t4n.

Let P (t) be the probability generating function of Z, we have

P (t) =

∞∑
n=0

P(Z = n) · tn

=

∞∑
n=0

P(Z = 4n) · t4n

= c

∞∑
n=0

P(X = 4n) · t4n

=
c

4
(G(t) +G(−t) +G(it) +G(−it)) .
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Since P (1) = 0, we must have

1 =
c

4
(G(1) +G(−1) +G(i) +G(−i))

=
c

4

(
e−λ(1−1) + e−λ(1+1) + e−λ(1−i) + e−λ(1+i)

)
=

ce−λ

4

(
eλ + e−λ + eiλ + e−iλ

)
=

ce−λ

2
(cosλ+ coshλ) .

Hence,

c =
2eλ

cosλ+ coshλ
.

Therefore,

P (t) =
c

4
(G(t) +G(−t) +G(it) +G(−it))

=
eλ

2(cosλ+ coshλ)

[
e−λ(1−t) + e−λ(1+t) + e−λ(1−it) + e−λ(1+it)

]
=

eλt + e−λt + eλit + e−λit

2(cosλ+ coshλ)

=
cosλt+ coshλt

cosλ+ coshλ
.

Differentiating this with respect to t gives us

P ′(t) =
λ(− sinλt+ sinhλt)

cosλ+ coshλ
,

and hence

E(Z) = P ′(1) =
λ(− sinλ+ sinhλ)

cosλ+ coshλ
.

E(Z) < λ is equivalent to
sinhλ− sinλ

coshλ+ cosλ
< 1,

which is then equivalent to
sinhλ− coshλ < sinλ+ cosλ,

which is
−e−λ < sinλ+ cosλ.

However, this is not necessarily true. Let λ = π. We have

LHS = −e−π > −e0 = −1,

and
RHS = sinπ + cosπ = −1,

which means LHS > RHS for λ = π, which means E(Z) > λ. Therefore, the statement is not true.
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