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2015.3 Question 1

1. We have

In − In+1 =

∫ ∞

0

1

(1 + u2)n
dx−

∫ ∞

0

1

(1 + u2)n+1
dx

=

∫ ∞

0

(1 + u2)− 1

(1 + u2)n+1
dx

=

∫ ∞

0

u2

(1 + u2)n+1
dx.

Notice that
d(1 + u2)−n

dx
= − 2un

(1 + u2)n+1
,

and therefore,
udx

(1 + u2)n+1
= −d(1 + u2)−n

2n
.

Using integration by parts, we have

In − In+1 =

∫ ∞

0

u2

(1 + u2)n+1
dx

=

∫ ∞

0

[
−ud(1 + u2)−n

2n

]
=

1

2n

[∫ ∞

0

du

(1 + u2)n
−
[
u · (1 + u2)−n

]∞
0

]
=

1

2n
[In − (0− 0)]

=
1

2n
In,

as desired.

Hence, we have

In+1 =

(
1− 1

2n

)
In =

2n− 1

2n
In.

Notice that

I1 =

∫ ∞

0

du

1 + u2
= [arctanu]

∞
0 =

π

2
,

and therefore, we have

In+1 =
2n− 1

2n
In

=
2n− 1

2n
· 2n− 3

2n− 2
· In−1

=
2n− 1

2n
· 2n− 3

2n− 2
· 2n− 5

2n− 4
· In−2

...

=
2n− 1

2n
· 2n− 3

2n− 2
· 2n− 5

2n− 4
· · · 2 · 1− 1

2 · 1
· I1

=
(2n− 1)(2n− 3)(2n− 5) · · · 3 · 1
(2n) · (2n− 2) · (2n− 4) · · · 4 · 2

· π
2
.

Let

A = (2n− 1)(2n− 3)(2n− 5) · · · 3 · 1,
B = (2n) · (2n− 2) · (2n− 4) · · · 4 · 2.
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Notice that
AB = (2n)!, B = 2n · n!,

and therefore

A =
(2n)!

2n · n!
,

and hence

In+1 =
(2n− 1)(2n− 3)(2n− 5) · · · 3 · 1
(2n) · (2n− 2) · (2n− 4) · · · 4 · 2

· π
2

=
(2n)!/(2n · n!)

2n · n!
· π
2

=
(2n)!π

22n+1(n!)2
,

as desired.

2. If we do the substitution u = 1
x , we will have u → 0+ as x → ∞, and u → ∞ as x → 0+. We have

du = − 1
x2 dx. Therefore,

J =

∫ ∞

0

f((x− x−1)2) dx

=

∫ 0

∞
f((u−1 − u)2)

(
−x2 du

)
=

∫ ∞

0

u−2f((u− u−1)2) du,

which is exactly the first equal sign as desired (since u is just an arbitrary variable).

For the second equal sign, notice that

2J = J + J

=

∫ ∞

0

f((x− x−1)2) dx+

∫ ∞

0

x−2f((x− x−1)2) dx

=

∫ ∞

0

(
1 + x−2

)
f((x− x−1)2) dx,

and therefore

J =
1

2

∫ ∞

0

(
1 + x−2

)
f((x− x−1)2) dx.

For the final equal sign, consider the substitution u = x−x−1. Note du =
(
1 + x−2

)
dx, and when

x → 0+, u → −∞, when x → ∞, u → ∞. Therefore,

J =
1

2

∫ ∞

0

(
1 + x−2

)
f((x− x−1)2) dx

=
1

2

∫ ∞

−∞
f(u2) du.

Since f(u2) = f((−u)2) for all u ∈ R, we therefore have∫ 0

−∞
f(u2) du =

∫ ∞

0

f(u2) du,

and hence

J =

∫ ∞

0

f(u2) du,

as desired.
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3. Notice that the integrand satisfies

x2n−2

(x4 − x2 + 1)n
=

1

x2
· (x2)n

(x4 − x2 + 1)n

=
1

x2
· 1

(x2 − 1 + x−2)n

=
1

x2
· 1

[(x− x−1)2 + 1]n
.

Therefore, consider the function fn(x) =
1

(x+1)n , we have∫ ∞

0

x2n−2

(x4 − x2 + 1)n
dx =

∫ ∞

0

1

x2
· 1

[(x− x−1)2 + 1]n
· dx

=

∫ ∞

0

x−2fn((x− x−1)2) dx

=

∫ ∞

0

fn(u
2) du

=

∫ ∞

0

du

(u2 + 1)n

=
(2n− 2)!π

22n−1((n− 1)!)2
.
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2015.3 Question 2

1. Let m = 1000. Notice for all n ≥ m,

n2 = n · n ≥ m · n ≥ 1000n.

2. This statement is false. Let sn = (−1)n and tn = −(−1)n. Then sn = 1 and tn = −1 for even ns,
and sn = −1 and tn = 1 for odd ns.

So sn ≥ tn for even ns, and tn ≥ sn for odd ns. Since there can be arbitrarily big even and odd
numbers, neither of the statements are true for these sequences.

3. Let m1 be the m for (sn) ≤ (tn) and m2 be the m for (tn) ≤ (un). Let m = max{m1,m2}.
Notice that for all n ≥ m, we have n ≥ m1 and therefore snleqtn, and n ≥ m2 amd therefore
tn ≤ un.

By the transitivity of the ≤ relation, we have therefore sn ≤ un, for all n ≥ m. Therefore, this
statement is true.

4. This statement is true. Let m = 4, we aim to prove that 2n ≥ n2 for all n ≥ m.

We first wish to prove the lemma: for all n ≥ 4, we have n2 ≥ 2n+ 1.

This is equivalent to proving that n2 − 2n+ 1 ≥ 2 for all n ≥ 4.

Notice that n2 − 2n+ 1 = (n− 1)2 ≥ (4− 1)2 = 9 ≥ 2 is true.

This finishes our proof for the lemma.

We show the original statement by mathematical induction.

(a) Base case. For n = 4, we have 24 = 16 ≥ 42 = 16.

(b) Inductive step. Assume that 2k ≥ k2 for some n = k ≥ 4. We aim to show that 2k+1 ≥
(k + 1)2.

2k+1 = 2 · 2k

≥ 2 · k2

= k2 + k2

≥ k2 + 2k + 1

= (k + 1)2.

Therefore, by the principle of mathematical induction, we have 2n ≥ n2 for all n ≥ 4, and this
finishes our proof.
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2015.3 Question 3

1. We prove the first part by contradiction. Assume that sec θ ≯ 0, this means sec θ ≤ −1.

But in this case,
r − a sec θ ≥ r + a ≥ a > b,

but |r − a sec θ| = b, implies r − a sec θ ≤ b, and this leads to a contradiction.

This implies that sec θ > 0. Hence, cos θ > 0, and θ ∈
(
−π

2 ,
π
2

)
.

We aim to show that |r − a sec θ| = b lies on the conchoid of Nicomedes where L : x = a and d = b,
with A(0, 0).

Let O be the origin, Pθ(a, a tan θ) and P0(a, 0). All points on the half-line OPθ will have argument
θ.

x

y

O P0(a, 0)

Pθ(a, a tan θ)

θ

a sec θ

a

Qθ,1

Qθ,2

b

b

L : x = a

Let Qθ be the points on such line, satisfying the given equation |r − a sec θ| = b.

For every θ ∈
(
−π

2 ,
π
2

)
, we have

|OPθ| = |OP0| sec θ = a sec θ.

The given equation |r − a sec θ| = b simplifies to r = a sec θ ± b.

This implies that Qθ must lie on the half-line OPθ through O, and a fixed distance b away measured
along OPθ from line L : x = a (which is measured from Pθ).

This is precisely the definition of a conchoid of Nicomedes, and this finishes our proof.

x

y

O

L : x = a

b b

P0(a, 0)

Eason Shao Page 128 of 430



STEP Project Year 2015 Paper 3

2. The sketch is as below.

x

y

O

L : x = a

b b

P0(a, 0)

When sec θ < 0, sec θ ≤ −1. We have r = a sec θ ± b.

Since r ≥ 0, we must have r = a sec θ + b ≥ 0 (since if r = a sec θ − b, then r < 0), and hence

−1 ≥ sec θ ≥ − b

a
,−1 ≤ cos θ ≤ −a

b
,

which means the area of the loop is given by the range of

θ ∈
(
−π,− arccos

(
−a

b

)]
∪
[
arccos

(
−a

b

)
, π
]
.

Therefore, the area of the loop is given by

A =
1

2

[∫ − arccos(− a
b )

−π

r2 dθ +

∫ π

arccos(− a
b )

r2 dθ

]
.

Notice that ∫
r2 dθ =

∫ (
a2 sec2 θ + 2ab sec θ + b2

)
dθ

= a2 tan θ + 2ab ln|sec θ + tan θ|+ b2θ + C

= tan θ + 4 ln|sec θ + tan θ|+ 4θ + C,

and

α = arccos
(
−a

b

)
= arccos

(
−1

2

)
=

2π

3
.
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Therefore,

A =
1

2

[∫ − arccos(− a
b )

−π

r2 dθ +

∫ π

arccos(− a
b )

r2 dθ

]

=
1

2

[
(tan θ + 4 ln|sec θ + tan θ|+ 4θ)

− 2π
3

−π + (tan θ + 4 ln|sec θ + tan θ|+ 4θ)
π
2π
3

]
=

1

2

[(√
3 + 4 ln

∣∣∣−2 +
√
3
∣∣∣− 8π

3

)
− (0 + 4 ln|−1| − 4π)

+ (0 + 4 ln|−1|+ 4π)−
(
−
√
3 + 4 ln

∣∣∣−2−
√
3
∣∣∣+ 8π

3

)]
=

1

2

(
2
√
3− 16π

3
+ 8π

)
+ 2 ln(2−

√
3)− 2 ln(2 +

√
3)

=
4

3
π +

√
3 + 2 ln

(
2−

√
3

2 +
√
3

)

=
4

3
π +

√
3 + 4 ln(2−

√
3).
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2015.3 Question 4

1. Let f(z) = z3 + az2 + bz + c. If we restrict the domain to the reals, we have

lim
x→∞

f(x) = ∞, lim
x→−∞

f(x) = −∞.

By the definition of a limit, this means that f(x) > 0 for sufficiently big xs (say, for all x ≥ A),
and f(x) < 0 for sufficiently small xs (say, for all x ≤ B).

Since f is continuous on [B,A] ⊂ R, and f(B) < 0, f(A) > 0. This means that for some
ξ ∈ (B,A) ⊂ R such that f(ξ) = 0, which finishes our proof.

2. By Vieta’s Theorem, we have

z1 + z2 + z3 = −a,

z1z2 + z1z3 + z2z3 = b,

z1z2z3 = −c.

Therefore, we have S1 = −a and a = −S1. Notice that

S2
1 − S2

2
=

(z1 + z2 + z3)
2 − (z21 + z22 + z23)

2

=
2 · (z1z2 + z1z3 + z2z3)

2
= z1z2 + z1z3 + z2z3

= b.

This means

a = −S1,

b =
S2
1 − S2

2
.

Also, notice that

−S3
1 + 3S1S2 − 2S3 = −(z1 + z2 + z3)

3 + 3(z1 + z2 + z3)(z
2
1 + z22 + z23)− 2(z31 + z32 + z33)

= −(z31 + z32 + z33 + 3z1z
2
2 + 3z1z

2
3 + 3z2z

2
1 + 3z2z

2
3 + 3z3z

2
1 + 3z3z

2
2 + 6z1z2z3)

+ 3(z31 + z32 + z33 + z1z
2
2 + z1z

2
3 + z2z

2
1 + z2z

2
3 + z3z

2
1 + z3z

2
2)

− 2(z31 + z32 + z33)

= −6z1z2z3

= 6c,

as desired.

3. Consider the complex numbers zk = rk exp(iθk) for k = 1, 2, 3.

This means that znk = rnk exp(inθk) by de Moivre’s theorem, hence

Im znk = rnk sin(nθk).

This converts our condition to

Im

3∑
k=1

znk = 0

for n = 1, 2, 3.

Therefore, S1, S2, S3 are real, and therefore, so are a, b, c.

Hence, by part (i), there must be some k such that zk is real, which means θk is some multiple of
2π.

Eason Shao Page 131 of 430



STEP Project Year 2015 Paper 3

Since θk ∈ (−π, π), we must have θk = 0 for such.

If θ1 = 0, z1 ∈ R. This therefore means that zn1 ∈ R, and hence

Im

3∑
k=2

znk = 0

for n = 1, 2, 3.

Consider the polynomial (z − z2)(z − z3) = 0, and let the expansion be z2 + pz + q = 0.

By Vieta’s Theorem, we have

z2 + z3 = −p,

z2z3 = q.

This therefore means that

p = −(z2 + z3),

2q = (z2 + z3)
2 − (z22 + z23).

If z2+z3 ∈ R and z22+z23 ∈ R, then p, q ∈ R, and z2, z3 are solutions to a real quadratic (polynomial).

Hence, the first case is z2, z3 are both real, which gives θ2 = θ3 = 0 since rk > 0, and hence
θ2 = −θ3.

The other case where z2, z3 are complex congruent to each other gives θ2 = −θ3+2kπ where k ∈ Z
due to rk > 0. But since θ2, θ3 ∈ (−π, π), it must be the case that θ2 = −θ3, since the width of the
interval is exactly 2π, and it is an open interval.

This finishes our proof.
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2015.3 Question 5

1. • Step 3. Since
√
2 ∈ Q is rational, there must exist positive integers p, q ∈ N, such that

√
2 =

p

q
.

Therefore, q ·
√
2 = p ∈ Z, and therefore q ∈ S.

• Step 5. Since k ∈ S, k
√
2 is a positive integer and k ∈ N is a positive integer, and hence

(
√
2− 1) · k ·

√
2 = 2k −

√
2k

must be an integer, since 2k is an integer and k
√
2 is an integer. At the same time, it must

be positive, since
√
2 >

√
1 = 1.

Also, (
√
2− 1) ·k =

√
2k−k is an integer due to

√
2k being an integer and k being an integer,

and it is positive.

So (
√
2− 1) · k ∈ S as desired.

• Step 6. Notice that
√
2 <

√
4 = 2, and hence

√
2− 1 <

√
4− 1 = 1. This means that

0 < (
√
2− 1)k < k,

which implies that k is not the smallest positive integer in S, as defined in Step 4.

This leads to a contradiction, which means our initial assumption
√
2 is rational is not true,

and hence
√
2 is irrational.

2. • Only-if direction. Since 2
1
3 ∈ Q is rational, we must have

(
2

1
3

)2
∈ Q is rational as well,

which finishes our proof.

• If direction. Since 2
2
3 ∈ Q is rational, we must have 2

2
3 /2 = 2−

1
3 ∈ Q is rational, which then

implies 2
1
3 is rational, which finishes our proof.

(a) Assume that 2
1
3 and 2

2
3 are rational.

(b) Define the set T to be the set of positive integers with the following property:

t is in T if and only if t2
1
3 and t2

2
3 are integers,

i.e.
T =

{
t ∈ N | t2 1

3 ∈ N, t2
2
3 ∈ N

}
.

(c) Set T contains at least one positive integer, since there must exist a, b, c, d ∈ N by Step 1 such

that 2
1
3 = a

b and 2
2
3 = c

d , and bd ∈ T .

(d) Let k be the smallest positive integer in T .

(e) Consider the number
(
2

1
3 − 1

)
k.

Notice that since k ∈ T , we must have k ∈ N and 2
1
3 k ∈ N. Hence,

(
2

1
3 − 1

)
k ∈ Z

Since 2 > 1, we also have 2
1
3 > 1

1
3 = 1, and hence

(
2

1
3 − 1

)
k ∈ N.

Also, notice that (
2

1
3 − 1

)
k · 2 1

3 = 2
2
3 · k − 2

1
3 · k

and (
2

1
3 − 1

)
k · 2 2

3 = k − 2
2
3 · k

must also both be integers since k ∈ T .

This means that
(
2

1
3 − 1

)
k ∈ T.

(f) But notice that 1 = 1
1
3 < 2

1
3 < 8

1
3 = 2, which means 0 < 2

1
3 −1 < 1, and 0 <

(
2

1
3 − 1

)
k < k.

This contradicts with Step 4 where k is the smallest positive integer in T . This means our
assumption that 2

1
3 and 2

2
3 are rational, is false.

So either of them is not rational. By the statement we proved earlier, both of them must be
simultaneously rational or irrational, hence both of them must be irrational, which finishes
our proof.
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2015.3 Question 6

1. • Only-if direction. If w, z are real, then u = w + z and v = w2 + z2 are real. Also,

2v − u2 = 2(w2 + z2)− (w + z)2

= w2 − 2wz + z2

= (w − z)2

≥ 0,

which implies u2 ≤ 2v as desired.

• If direction. If u, v ∈ R and u2 ≤ 2v, we notice that

wz =
u2 − v

2
∈ R.

Hence, w, z are solutions to the quadratic equation

x2 − ux+
u2 − v

2
= 0.

Notice all coefficients in this equation is real. The discriminant satisfies

∆ = (−u)2 − 4 · 1 · u
2 − v

2

= u2 − 2(u2 − v)

= 2v − u2

≥ 0,

which implies both solutions must be real, i.e. w, z are real, as desired.

2. By simplification, we notice that letting u = w + z and v = w2 + z2, we have

w3 + z3 = (w + z)(w2 + z2)− wz(w + z)

= (w + z)(w2 + z2)− 1

2
((w + z)2 − (w2 + z2))(w + z)

= uv − u(u2 − v)

2

= u

(
v − u2 − v

2

)
=

u

2

(
2v − (u2 − v)

)
=

u(3v − u2)

2
.

This means,

−λ+ λu =
u
[
3 ·
(
u2 − 2

3

)
− u2

]
2

which simplifies to
(u− 1)(u2 + u− λ) = 0.

Therefore, u1 = 1. The discriminant of the remaining quadratic is

∆ = 1 + 4λ > 1 > 0,

since λ > 0.

Therefore, u must always be real.

The only case where there are less than 3 possible values of u, is when u1 = 1 is also a solution to
the quadratic.
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This is precisely when λ = u2 + u = 12 + 1 = 2.

Apart from this case, the two real solutions to the quadratic are distinct and must not be 1, and
there are three real values of u.

Since u is always real, u = w + z is always real and v = w2 + z2 is always real. However, notice
that

2v − u2 = 2 ·
(
u2 − 2

3

)
− u2 = u2 − 4

3
.

But when u = 1, 2v − u2 < 0, 2v < u2, and by part (i) at least one of w, z is not real.

Eason Shao Page 135 of 430



STEP Project Year 2015 Paper 3

2015.3 Question 7

Note that

D2xa = x
d

dx

(
x
d

dx
xa

)
= x

d

dx

(
x · axa−1

)
= ax

d

dx
xa

= ax · a · xa−1

= a2xa,

as desired.

1. Since we have that dxa = x · xa−1 · a = axa, and a is just a constant, then we must have

Dnxa = anxa.

If P (x) is a polynomial of degree r, let

P (x) =

r∑
k=0

tkx
k.

Therefore,

DnP (x) =

r∑
k=0

kntkx
k.

Notice that the highest degree term is rntrx
r.

Since P (x) originally has degree r ≥ 1, we have r ̸= 0 and tr ̸= 0, and therefore this term is
non-zero.

This implies DnP (x) has degree r as well.

2. We show this by induction on n. The base case where n = 0 is trivially true if we define D0 as the
identity. Now, assume this is true for some n = k < m− 1, i.e.

Dk(1− x)m = (1− x)m−k ·Q(x)

for some polynomial Q, we aim to show this for n = k + 1 < m. We have

Dk+1(1− x)m = D
[
(1− x)m−k ·Q(x)

]
= x

[
−(m− k)(1− x)m−k−1Q(x) + (1− x)m−kQ′(x)

]
= (1− x)m−k−1x [−(m− k)Q(x) + (1− x)Q′(x)] ,

which shows Dk+1(1− x)m is divisible by (1− x)m−k−1 which finishes our induction step. Hence,
by the principle of mathematical induction, the original statement holds for any n < m.

3. Notice that

(1− x)m =

m∑
r=0

(
m

r

)
(−x)r,

and hence

Dn(1− x)m =

m∑
r=0

(−1)r
(
m

r

)
rnxr.

Evaluate this at x = 1, we can see

[Dn(1− x)m]x=1 =

m∑
r=0

(−1)r
(
m

r

)
rn1r =

m∑
r=0

(−1)r
(
m

r

)
rn.
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But for n < m, Dn(1− x)m is divisible by (1− x)m−n and hence by (1− x). This means that

[Dn(1− x)m]x=1 = 0.

Hence,
m∑
r=0

(−1)r
(
m

r

)
rn = 0,

as desired.
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2015.3 Question 8

1. First, notice that
dy

dx
=

dy/dθ

dx/ dθ
=

dr/dθ · sin θ + r · cos θ
dr/dθ · cos θ − r · sin θ

.

Therefore, the original differential equation reduces to

(r sin θ + r cos θ)
dr/dθ · sin θ + r · cos θ
dr/dθ · cos θ − r · sin θ

= r sin θ − r cos θ

which further reduces to (since r ̸= 0)

(sin θ + cos θ)

[
dr

dθ
· sin θ + r cos θ

]
= (sin θ − cos θ)

[
dr

dθ
· cos θ − r sin θ

]
.

Expanding the brackets and cancelling the equivalent terms gives us

r cos2 θ +
dr

dθ
sin2 θ = −dr

dθ
cos2 θ − r sin2 θ,

which reduces to (due to the Pythagoras Theorem sin2 θ + cos2 θ = 1),

dr

dθ
+ r = 0,

as desired.

The rearrangement (since r ̸= 0)
dr

r
= −dθ

shows that the solution to this differential equation must satisfy that (since r > 0)

ln r = −θ + C,

i.e.
r = A exp(−θ),

where A > 0.

For critical values, notice that when θ = 0, r = A, and when θ = 2π, r = A
exp 2π , and that r is

decreasing with θ. The graph will look like a spiral

A sketch is shown below, for θ ∈ [0, 2π).

x

y

r = A exp(−θ), θ ∈ [0, 2π)

(A, 0)

2. Similar to the previous part, the equation reduces to(
sin θ + cos θ − cos θ · r2

) [dr
dθ

· sin θ + r cos θ

]
=
(
sin θ − cos θ − sin θ · r2

) [dr
dθ

· cos θ − r sin θ

]
,

and hence, by expanding brackets and eliminating terms,

dr

dθ
sin2 θ + r cos2 θ − r3 cos2 θ = −r sin2 θ − dr

dθ
cos2 θ + r3 sin2 θ,
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which then simplifies to
dr

dθ
+ r − r3 = 0.

Notice that r = 1 is a solution to this differential equation. Therefore, rearranging terms, we have

dr

r3 − r
= dθ.

By partial fractions
1

r3 − r
= −1

r
+

1

2(r + 1)
+

1

2(r − 1)
,

we therefore must have [
−1

r
+

1

2(r + 1)
+

1

2(r − 1)

]
· dr = dθ.

This therefore means that

1

2
ln|r + 1|+ 1

2
ln|r − 1| − ln|r| = θ + C,

for some constant C ∈ R.
Combining logarithms and absolute values gives us

ln

∣∣∣∣r2 − 1

r2

∣∣∣∣ = 2θ + C,

and therefore,
r2 − 1

r2
= ± expC · exp(2θ),

and this can be simplified to

1− 1

r2
= ± expC · exp(2θ),

and therefore

r2 =
1

1∓ expC · exp(2θ)
.

Let A = ∓ expC ̸= 0, and therefore

r2 =
1

1 +A exp(2θ)
.

Notice when r = 1, r satisfies that
r2 = 1,

so the general solution will be

r2 =
1

1 +A exp(2θ)

for A ∈ R which this equation makes sense.

We restrict ourselves to θ ∈ [0, 2π).

Notice that, this equation makes sense for all A ≥ 0, since the denominator is obviously non-
negative.

For A < 0, the denominator is decreasing in θ, and we would like it to be greater than zero for
some θ ∈ [0, 2π). Therefore, we would like the maximum possible value of the denominator to be
greater than, that is when θ = 0:

1 +A exp 0 > 0,

which gives A > −1.

We consider three cases where r > 0, i.e.,

r =
1√

1 +A exp(2θ)
.

Notice this always passes through
(

1√
1+A

, 0
)
.
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• When −1 < A < 0, the curve is not defined for

1 +A exp(2θ) ≤ 0,

and this is precisely when

exp 2θ ≥ − 1

A
,

which is

θ ≥ 1

2
· ln
(
− 1

A

)
.

This means the curve will have an asymptote of line

θ =
1

2
· ln
(
− 1

A

)
.

Also note that r is increasing in θ in this case, and r → ∞ as θ → the asymptote.

x

y

r = 1√
1+A exp(2θ)

θ = 1
2 · ln

(
− 1

A

)

(
1√
1+A

, 0
)

• When A = 0, notice this just gives r = 1, which is a circle with radius 1 centred at the origin.

x

y

r = 1

(1, 0)(−1, 0)

(0, 1)

(0,−1)

• In the final case where A > 0, the following case arises.

x

y

r = 1√
1+A exp(2θ)

(
1√
1+A

, 0
)

(
1√

1+A exp(2π)
, 0

)
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2015.3 Question 12

1. Let X be the random variable for the outcome of one die roll. It has probability distribution
P(X = x) = 1

6 for x = 1, 2, . . . , 6.

Therefore, R1 follows the probability distribution P(R1 = x) = 1
6 fir x = 0, 1, . . . , 5, since R1 =

Xmod6.

This means that

G(x) =
1

6

(
1 + x+ x2 + x3 + x4 + x5

)
.

R2 = (X1 +X2)mod 6 = ((R1)a + (R1)b)mod 6, and notice that,

G(x)2 =
1

36

(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10

)
.

Therefore, combining the terms with the same powers modulo 6, we get

GR2
(x) =

1

36

(
(1 + 5) + (2 + 4)x+ (3 + 3)x2 + (4 + 2)x3 + (5 + 1)x4 + 6x5

)
which simplifies gives G(x), as desired.

Therefore, since Rn = (X1+X2+. . .+Xn)mod 6 = (Rn−1+R1)mod 6, by mathematical induction,
we can conclude that the probability generating function for Rn is always G(x).

This means that the probability of Rn being a multiple of 6, is

P (6 | Rn) =
1

6
.

2. Notice that G1(x), the probability generating function for T1 must be

G1(x) =
1

6

(
1 + 2x+ x2 + x3 + x4

)
.

Therefore, notice that

G1(x)
2 =

1

36

(
1 + 4x+ 6x2 + 6x3 + 7x4 + 6x5 + 3x6 + 2x7 + x8

)
,

and combining the powers with the same remainder modulo 5, we have

G2(x) =
1

36

(
7 + 7x+ 8x2 + 7x3 + 7x4

)
=

1

36

(
x2 + 7y

)
where y = 1 + x+ x2 + x3 + x4, as desired.

Expressing G1 in terms of y, we have

G1(x) =
1

6
(x+ y).

Experimenting with G3, we notice

G1(x) ·G2(x) =
1

63
(x+ y)(x2 + 7y)

=
1

63
(x3 + 7xy + x2y + 7y2).

But notice that up to the congruence of the powers modulo 5, we have xny will simplify to simply
y, and

(x+ y)2 = x2 + y2 + 2xy = x2 + 7y

from G1(x)
2 = G2(x) implies that y2 simplifies to 5y.

Therefore,

G3(x) =
1

63
(x3 + 7y + y + 7 · 5y) = 1

63
(x3 + 43y).
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Now, we assert that

Gn(x) =
1

6n
(xnmod 5 +

6n − 1

5
y).

The base case is shown in G1, and now we do the inductive step. Assume that

Gk(x) =
1

6k
(xkmod 5 +

6k − 1

5
y)

for some k ∈ N.

Gk+1(x) = Gk(x) ·G1(x)

=
1

6k
·
(
xkmod 5 +

6k − 1

5
y

)
· 1
6
· (x+ y)

=
1

6k+1
·
(
xkmod 5 · x1 + xkmod 5 · y + x · 6

k − 1

5
y +

6k − 1

5
y2
)

=
1

6k+1
·
(
x(k+1)mod 5 + y +

6k − 1

5
y +

6k − 1

5
· 5y
)

=
1

6k+1
·
(
x(k+1)mod 5 +

(
6k − 1

5
+ 6k

)
y

)
.

What remains to prove is that
6k − 1

5
+ 6k =

6k+1 − 1

5
,

but this is straightforward since this is just trivial algebra.

So our assertion is true, and

Gn(x) =
1

6n
(xnmod 5 +

6n − 1

5
y).

Now, the probability of 5 | Sn is the coefficient of x0 (the constant term) in Gn(x).

If 5 ∤ n, xnmod 5 is not x0, and therefore the only term that contributes to the constant term comes
from y, therefore

P (5 | Sn) =
1

6n
· 6

n − 1

5
=

1

5

(
1− 1

6n

)
,

as required.

If 5 | n, then xnmod 5 will be x0 = 1 contributing to the probability, hence

P (5 | Sn) =
1

6n
·
(
1 +

6n − 1

5

)
=

1

5

(
1 +

4

6n

)
.
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2015.3 Question 13

1. The cumulative distribution function of X + Y at some value t is ratio of the area below the line
X + Y = t within the unit square [0, 1]2, against the area of the unit square (which is 1).

When 0 ≤ t ≤ 1, the area below is a triangle with vertices at (0, 0), (0, t) and (t, 0). This means

FX+Y (t) =
1

2
t2.

When 1 ≤ t ≤ 2, the area below is the unit square subtracting the triangle with vertices at (1, 1),
(1, t− 1) and (t− 1, 1). This means

FX+Y (t) = 1− 1

2
[1− (t− 1)]2 = 1− 1

2
(2− t)2.

Hence, we have

FX+Y (t) =


0, t < 0,
1
2 t

2, 0 ≤ t < 1,

1− 1
2 (2− t)2, 1 ≤ t < 2,

1, 2 ≤ t.

2. Since X + Y ∈ [0, 2], (X + Y )−1 ∈
[
1
2 ,∞

)
. Let t′ ∈

[
1
2 ,∞

)
, we have

F(X+Y )−1(t′) = P

(
1

X + Y
≤ t′

)
= P

(
X + Y ≥ 1

t′

)
= 1− P

(
X + Y <

1

t′

)
= 1− FX+Y

(
1

t′

)
.

If t′ ∈
[
1
2 , 1
]
, we have t′−1 ∈ [1, 2], and hence

F(X+Y )−1(t′) = 1− FX+Y

(
1

t′

)
= 1−

[
1− 1

2

(
2− 1

t′

)2
]

=
1

2

(
2− 1

t′

)2

.

If t′ ∈ [1,∞), we have t′−1 ∈ (0, 1], and hence

F(X+Y )−1(t′) = 1− FX+Y

(
1

t′

)
= 1− 1

2

(
1

t′

)2

.

Therefore, the cumulative distribution function of (X + Y )−1 is given by

F(X+Y )−1(t′) =


0, t′ < 1

2 ,
1
2

(
2− 1

t′

)2
, 1

2 ≤ t′ < 1,

1− 1
2

(
1
t′

)2
, 1 ≤ t′.
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The probability density function of (X + Y )−1 is

f(X+Y )−1(t′) =
d

dt′
F(X+Y )−1(t′)

=


1
2 · 2 ·

(
2− 1

t′

)
· t′−2

= 2t′
−2 − t′

−3
, 1

2 ≤ t′ < 1,

−(−2) 12 t
′−3

= t′
−3

, 1 ≤ t′,

0, otherwise,

as desired.

The expectation of 1
X+Y is

E

(
1

X + Y

)
=

∫
R
tf(X+Y )−1(t) dt

=

∫ 1

1
2

t ·
(
2t−2 − t−3

)
dt+

∫ ∞

1

t · t−3 dt

=

∫ 1

1
2

(
2t−1 − t−2

)
dt+

∫ ∞

1

t−2 dt

=
[
2 ln t+ t−1

]1
1
2

−
[
t−1
]∞
1

=

[(
2 ln 1 + 1−1

)
−

(
2 ln

1

2
+

(
1

2

)−1
)]

− (0− 1)

= [1 + 2 ln 2− 2] + 1

= 2 ln 2.

3. The cumulative distribution function of Y/X at some value t is the ratio of the area below the line
Y/X = t within the unit square [0, 1]2, against the area of the unit square.

Since 0 ≤ X,Y ≤ 1, we have 0 ≤ Y/X < ∞.

When 0 ≤ t ≤ 1, the area below is a triangle with vertices at (0, 0), (1, 0) and (1, t). Hence, we
have

FY/X(t) =
t

2
.

When 1 ≤ t < ∞, the area below is the whole unit square, subtracting the triangle with the vertices
at (0, 0), (0, 1) and

(
1, 1

t

)
. Hence, we have

FY/X(t) = 1− 1

2t
.

Therefore,

FY/X(t) =


0, t < 0,
t
2 , 0 ≤ t < 1,

1− 1
2t , 1 ≤ t.

Hence, we have for 0 < t′ ≤ 1, we have

F X
X+Y

(t′) = P

(
X

X + Y
≤ t′

)
= P

(
1

t′
≤ X + Y

X

)
= P

(
1

t′
≤ 1 +

Y

X

)
= P

(
Y

X
≥ 1

t′
− 1

)
= 1− P

(
Y

X
≤ 1

t′
− 1

)
= 1− FY/X

(
1

t′
− 1

)
.
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For 0 < t′ ≤ 1
2 , we have 2 ≤ 1

t′ , and hence 1 ≤ 1
t′ − 1,

F X
X+Y

(t′) = 1− FY/X

(
1

t′
− 1

)
= 1−

[
1− 1

2 ·
(
1
t′ − 1

)]

=
1

2 ·
(
1
t′ − 1

)
=

t′

2− 2t′
.

For 1
2 ≤ t′ ≤ 1, we have 1 ≤ 1

t′ ≤ 2, and hence 0 ≤ 1
t′ ≤ 1,

F X
X+Y

(t′) = 1− FY/X

(
1

t′
− 1

)
= 1−

1
t′ − 1

2

=
2− 1

t′ + 1

2

=
3t′ − 1

2t′
.

Hence, we have

F X
X+Y

(t′) =


0, t′ ≤ 0,

t′

2−2t′ , 0 < t′ ≤ 1
2 ,

3t′−1
2t′ , 1

2 < t′ ≤ 1,

1, 1 < t′.

Differentiating gives

f X
X+Y

(t′) =
d

dt′
F X

X+Y
(t′)

=


1·(2−2t′)+2t′

(2−2t′)2 = 1
2(1−t′)2 , 0 < t′ ≤ 1

2 ,
3·2t′−2(3t′−1)

4t′2
= 1

2t′2
, 1

2 < t′ ≤ 1,

0, otherwise.

By symmetry, E
(

X
X+Y

)
= E

(
Y

X+Y

)
, but also

E

(
X

X + Y

)
+ E

(
Y

X + Y

)
= E

(
X

X + Y
+

Y

X + Y

)
= E(1) = 1,

and hence

E

(
X

X + Y

)
=

1

2
.
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Using integration, we have

E

(
X

X + Y

)
=

∫
R
xf X

X+Y
(x) dx

=

∫ 1
2

0

x

2(1− x)2
dx+

∫ 1

1
2

1

2x
dx

=

∫ 1
2

0

x

2
d

1

1− x
+

1

2
[lnx]

1
1
2

=

[
x

2(1− x)

] 1
2

0

− 1

2

∫ 1
2

0

1

1− x
dx+

ln 2

2

=
1
2

2 · 1
2

+
1

2
[ln(1− x)]

1
2
0 +

ln 2

2

=
1

2
− ln 2

2
+

ln 2

2

=
1

2
.
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