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2014.3 Question 1

Notice that
(1 + ax)(1 + bx)(1 + cx) = 1 + (a+ b+ c)x+ (ab+ ac+ bc)x2 + abcx3,

and by comparing coefficients we have

q = bc+ ca+ ab, r = abc

1. Using the identities for the logarithms, we have

ln(1 + qx2 + rx3) = ln(1 + ax) + ln(1 + bx) + ln(1 + cx)

=

∞∑
k=1

(−1)k+1 (ax)
k

k
+

∞∑
k=1

(−1)k+1 (bx)
k

k
+

∞∑
k=1

(−1)k+1 (cx)
k

k

=

∞∑
k=1

(−1)k+1xk a
k + bk + ck

k
,

and hence

Sk =
ak + bk + ck

k
,

as desired.

2. Since

S2 =
a2 + b2 + c2

2

=
(a+ b+ c)2 − 2(ab+ bc+ ca)

2

=
02 − 2q

2
= −q,

S3 =
a3 + b3 + c3

3

=
(a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) + 3abc

3
= abc

= r,

and

S5 =
a5 + b5 + c5

5

=
(a2 + b2 + c2)(a3 + b3 + c3)− a2b2(a+ b)− a2c2(a+ c)− b2c2(b+ c)

5

=
(−2q)(3r) + a2b2c+ b2c2a+ a2c2b

5

=
−6qr + abc(ab+ bc+ ac)

5

=
−6qr + qr

5
= −qr.

Therefore, S2S3 = S5 as desired.
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3. Notice that

S7 =
a7 + b7 + c7

7

=
(a2 + b2 + c2)(a5 + b5 + c5)

7

=
(−2q) · (−5qr)− a2b2(a3 + b3)− b2c2(b3 + c3)− a2c2(a3 + c3)

7

=
10q2r − a2b2(3r − c3)− b2c2(3r − a3)− a2c2(3r − b3)

7

=
10q2r − 3r(a2b2 + b2c2 + a2c2) + a2b2c2(a+ b+ c)

7

=
10q2r − 3r

[
(ab+ bc+ ac)2 − 2abc(a+ b+ c)

]
+ r2 · 0

7

=
10q2r − 3q2r

7

= q2r.

Also, S2S5 = (−q) · (−qr) = q2r, so S2S5 = S7 as desired.

4. Let a = 1, b = 1, c = −2. q = bc+ca+ab = −3, r = −2. This means S2 = −q = 3, S7 = q2r = −18.
Notice that

S9 =
a9 + b9 + c9

7
=

19 + 19 + (−2)9

9
= −510

9
= −170

3
,

and this is obviously not S2S7 which gives a counterexample and the original statement is not true.
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2014.3 Question 2

1. Since u = coshx, cosh 2x = 2 cosh2 x− 1 = 2u2 − 1, and sinhx dx = dcoshx = du. Hence,∫
sinhx

cosh 2x
dx =

∫
du

2u2 − 1

=

∫
1

2

(
1√

2u− 1
− 1√

2u+ 1

)
du

=
1

2
√
2

(
ln
∣∣∣√2u− 1

∣∣∣− ln
∣∣∣√2u+ 1

∣∣∣)+ C

=
1

2
√
2
ln

∣∣∣∣∣
√
2 coshx− 1√
2 coshx+ 1

∣∣∣∣∣+ C,

as desired.

2. Let u = sinhx, cosh 2x = 1 + 2 sinh2 x = 1 + 2u2, and coshx dx = d sinhx = du. Hence,∫
coshx

cosh 2x
dx =

∫
du

1 + 2u2

=
1√
2
arctan()

√
2u) + C

=
1√
2
arctan()

√
2 sinhx) + C.

3. Notice that
coshx

cosh 2x
− sinhx

cosh 2x
=

2e−x

e2x + e−2x
=

2ex

1 + e4x
.

Let u = ex, du = dex = ex dx, and therefore∫ 1

0

du

1 + u4
=

∫ 0

−∞

ex dx

1 + x4

=
1

2

∫ 0

−∞

coshx

cosh 2x
− sinhx

cosh 2x
dx

=
1

2

[
1√
2
arctan(

√
2 sinhx)− 1

2
√
2
ln

∣∣∣∣∣
√
2 coshx− 1√
2 coshx+ 1

∣∣∣∣∣
]0
−∞

=
1

4
√
2

[
2 arctan(

√
2 sinhx)− ln

∣∣∣∣∣
√
2 coshx− 1√
2 coshx+ 1

∣∣∣∣∣
]0
−∞

=
1

4
√
2

[(
0− ln

∣∣∣∣∣
√
2− 1√
2 + 1

∣∣∣∣∣
)

−
(
2 · (−π

2
)− ln|1|

)]

=
1

4
√
2

[
π − 2 ln(

√
2− 1)

]
=

π + 2 ln(
√
2 + 1)

4
√
2

,

as desired.
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2014.3 Question 3

1. Consider the point on the curve whose gradient is equal to m. Since on the curve, x = y2

4a , and
hence

dx

dy
=

y

2a
=

1

m
,

which solves to y0 = 2a
m , and hence x0 = a

m2 , the tangent to this point is y = mx+ a
m .

If a
m < c and mc > a, this means that the line y = mx+ c is above the tangent. Let θ = arctanm,

and we know the perpendicular distance between these lines will be(
c− a

m

)
· cos θ =

(
c− a

m

)
· 1√

m2 + 1
=

cm− a

m
√
m2 + 1

.

If a
m ≥ c and mc ≤ a, this means that the line y = mx + c is the tangent (in the equal case) or

below the tangent (in the less-than case), which both means the line y = mx + c intersects with
the parabola.

Hence, when mc ≤ a, the shortest distance is always 0.

2. The distance d between (p, 0) and (at2, 2at) can be expressed as

d2 = (at2 − p)2 + (2at)2

= a2t4 − 2apt2 + p2 + 4a2t2

= a2t4 + 2a(2a− p)t2 + p2.

We would like to minimise d ≥ 0, which is the same as minimising d2.

The minimum of the quadratic function

f(x) = a2x2 + 2a(2a− p)x+ p2

occurs when

x = −2a(2a− p)

2 · a2
=

p− 2a

a
=

p

a
− 2.

However, d2 = f(t2) and t2 can only be non-negative.

If p
a − 2 ≥ 0, p

a ≥ 2, then this value can be taken, and the minimum will be

d2 =
4a2p2 − [2a(2a− p)]

2

4a2
= p2 − (2a− p)2 = −4a2 + 4ap = 4a(p− a)

and the minimal d will be
d = 2

√
a(p− a).

In the other case where p
a < 2, to let the t2 value to be as close as possible to the symmetric axis,

we would like t2 = 0, at which point the minimal distance will be

d2 = f(0) = p2,

and the minimal d will be
d = p.

The circle described is simply a circle centred at (p, 0) with radius b. Therefore, the shortest
distance will be d− b if d > b, and 0 otherwise.

To put this into cases,

• If p ≥ 2a, d = 2
√

a(p− a).

– If 2
√
a(p− a) > b, i.e. b2 < 4a(p− a), the shortest distance is 2

√
a(p− a)− b.

– Otherwise, 2
√
a(p− a) ≤ b, i.e. b2 ≥ 4a(p− a), the shortest distance is 0.

• Otherwise, p < 2a, d = p.

– If p > b, the shortest distance is p− b.

– Otherwise, p ≤ b, the shortest distance is 0.
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2014.3 Question 4

1. We have

I − I0 =

∫ 1

0

[
(y′)2 − y2 − (y′ + y tanx)2

]
dx

= −
∫ 1

0

[
y2 + y2 tan2 x+ 2yy′ tanx

]
dx

= −
∫ 1

0

[
y2(1 + tan2 x) + 2yy′ tanx

]
dx

= −
∫ 1

0

(
y2 · sec2 x+ 2y · y′ · tanx

)
dx.

But notice that
d

dx
y2 tanx = y2 · sec2 x+ 2y · y′ · tanx,

and hence

I − I0 = −
∫ 1

0

(
y2 · sec2 x+ 2y · y′ · tanx

)
dx

= −
[
y2 tanx

]1
0

= −(y(1)2 tan 1− 02 tan 0)

= −(02 tan 1− 0)

= 0,

as desired.

This gives I = I1. Also, notice that the integrand of I1 is (y′ + y tanx)2 is always non-negative,
which means I1 ≥ 0, taking 0 only when y′ + y tanx = 0 for all x ∈ (0, 1).

y′ + y tanx = 0

dy

dx
= −y tanx

dy

y
= − tanx dx

ln|y| = − ln|secx|+ C

y = A cosx.

When x = 1, y = 0, hence A = 0 since cos 1 ̸= 0. This means I1 = 0 if and only if y = 0 for all
x ∈ [0, 1].

Since I = I1, we know that I ≥ 0, with the equal sign holding if and only if y = 0 for all x ∈ [0, 1].

2. Let

J0 =

∫ 1

0

(y′ + ay tan bx)2 dx,

and we have

J − J0 =

∫ 1

0

[
((y′)2 − a2y2)− (y′ + ay tan bx)2

]
dx

= −
∫ 1

0

[
a2y2 + a2y2 tan2 bx+ 2y′ · y · a · tan bx

]
dx

= −
∫ 1

0

[
a2y2 sec2 bx+ 2y′ · y · a · tan bx

]
dx

= −a

∫ 1

0

[
ay2 sec2 bx+ 2y′ · y · tan bx

]
dx.
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Notice that if we let b = a, we have

dy2 tan bx

dx
= 2yy′ tan bx+ by2 sec2 bx = 2yy′ tan bx+ ay2 sec2 bx.

This means

J − J0 = −a

∫ 1

0

[
ay2 sec2 bx+ 2y′ · y · tan bx

]
dx

= −a
[
y2 tan ax

]1
0

= −a(y(1)2 tan a− 02 tan 0)

= 0.

This means J = J0.

Since the integrand of J0 is a square, we know J0 ≥ 0 and hence J ≥ 0.

This is only valid when ax < π
2 for x ∈ [0, 1] (since otherwise this range will cross an undefined

point), which means a < π
2 .

When a = π
2 , consider y = cos ax. Notice that y′ = −a sin ax, and therefore

J =

∫ 1

0

((−a sin ax)2 − a2 cos2 ax) dx

= −a2
∫ 1

0

(cos2 ax− sin2 ax) dx

= −a2
∫ 1

0

cos(2ax) dx

= −a2
[
sin 2ax

2a

]1
0

= −a

2
[sinπx]

1
0

= −a

2
(0− 0)

= 0,

but y is not uniformly zero.
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2014.3 Question 5

ABCD is a parallelogram if and only if AB is parallel and equal to DC. This is true if and only if,

−−→
AB =

−−→
DC,

and using complex representation (which is also equivalent)

b− a = c− d.

This is equivalent to
a+ c = b+ d

so we are done.
In this case, ABCD is further a square if and only if it is both a rhombus and a rectangle. It is a

rhombus if and only if the two diagonals, AC and BD, are perpendicular to each other, and a rectangle
if and only if the two diagonals, AC and BD, have equal length.

This is equivalent to
−−→
BD being

−→
AC rotated 90 degrees anti-clockwise exactly (due to the labelling as

defined), and using complex representation (which is equivalent)

i(c− a) = (d− b).

Flipping the signs on both sides (which is reversible) gives

i(a− c) = (b− d)

as desired.

1. X is the centre of the square constructed externally along the edge PQ if and only if
−−→
PX is

−−→
PQ

rotated clockwise by 45 degrees and scaled down by a factor of
√
2. In complex notation, this is

equivalent to

x− p = (q − p) · 1√
2
· e−iπ

4 .

But notice that e−iπ
4 = cos π

4 − i sin π
4 = 1√

2
(1− i), and hence this equation is equivalent to

x =
1

2
(q − p)(1− i) + p =

(1 + i)p+ (1− i)q

2
,

as desired.

2. Similarly, we have

y =
(1 + i)q + (1− i)r

2
,

z =
(1 + i)r + (1− i)s

2
,

t =
(1 + i)s+ (1− i)t

2
.

XY ZT is a square, if and only if
x+ z = y + t

and
i(x− z) = y − t.

For the first one, this is equivalent to

(1 + i)p+ (1− i)q + (1 + i)r + (1− i)s = (1− i)p+ (1 + i)q + (1− i)r + (1 + i)s,

which is equivalent to
p+ r = q + s,

which is equivalent to PQRS being a parallelogram.
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For the second one, this is equivalent to

i · ((1 + i)p+ (1− i)q − (1 + i)r − (1− i)s) = −(1− i)p+ (1 + i)q + (1− i)r − (1 + i)s,

which is equivalent to

−(1 + i)p+ (1 + i)q + (1− i)r − (1 + i)s = −(1− i)p+ (1 + i)q + (1− i)r − (1 + i)s,

which is trivially true.

This shows that XY ZT being square is equivalent to PQRS being a parallelogram as desired.
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2014.3 Question 6

Since f ′′(t) > 0 for t ∈ (0, x0), we must have that for all x ∈ (0, x0), we have f ′′(t) > 0 for t ∈ (0, x),
and hence ∫ x

0

f ′′(t) dt = f ′(x)− f ′(0) > 0.

But since f ′(0) = 0, this implies that f ′(x) > 0 for x ∈ (0, x0).
Repeating this exact step gives that f(x) > 0 for x ∈ (0, x0) as desired.

1. We would like to show f(x) = 1− cosx coshx > 0 for x ∈
(
0, 1

2π
)
. Notice that f(0) = 1− 1 · 1 = 0,

and
f ′(x) = sinx coshx− cosx sinhx,

which means
f ′(0) = 0 · 1− 1 · 0 = 0.

Further differentiation gives

f ′′(x) = cosx coshx+ sinx sinhx+ sinx sinhx− cosx coshx = 2 sinx sinhx.

If x ∈
(
0, π

2

)
, we have sinx > 0 and sinhx > 0, which gives f ′′(x) > 0.

From the lemma we proved we have f(x) > 0 for x ∈
(
0, π

2

)
, which is exactly cosx coshx < 1 as

desired.

2. What is desired is to show sinx coshx− x > 0 and x2 − sinx sinhx > 0 for x ∈
(
0, π

2

)
.

Let g(x) = sinx coshx−x and h(x) = x2−sinx sinhx. g(0) = 0 ·1−0 = 0 and h(0) = 02−0 ·0 = 0.

Differentiating gives
g′(x) = cosx coshx+ sinx sinhx− 1,

and
h′(x) = 2x− cosx sinhx− sinx coshx.

Hence,
g′(0) = 1 · 1 + 0 · 0− 1 = 0,

and
h′(0) = 2 · 0− 1 · 0− 0 · 1 = 0.

Differentiating this again gives

g′′(x) = − sinx coshx+ cosx sinhx+ cosx sinhx+ sinx coshx = 2 cosx sinhx,

and

h′′(x) = 2 + sinx sinhx− cosx coshx− cosx coshx− sinx sinhx = 2− 2 cosx coshx.

For x ∈ (0, π
2 ), we notice that cosx > 0 and sinhx > 0, and so g′′(x) > 0. Also, notice that

h′′(x) = 2f(x) so h′′(x) > 0.

Hence, g(x) > 0, h(x) > 0 when x ∈ (0, π
2 ) which proves the result as desired.
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2014.3 Question 7

1. Since P1, P2, P3, P4 are cyclic, they must satisfy that ∠P1P2P4 = ∠P1P3P4, which means ∠P1P2Q =
∠QP3P4. Also, we must have ∠P1QP2 = ∠P3QP4.

This means that △P1QP2 ∼ ∠P4QP3 (in this order). Therefore, the ratio of the side lengths satisfy
that

P1Q

QP2
=

P4Q

QP3
,

and hence
P1Q ·QP3 = P2Q ·QP4

as desired.

2. Since Q is the intersection of P1P3 and P2P4, Q is on P1P3, and hence the position vector of Q, q
can be expressed as a convex combination of p1 and p3, i.e.,

q = b1p1 + b3p3

where b1 + b3 = 1.

Similarly,
q = b2p2 + b4p4

where b2 + b4 = 1.

Hence
b1p1 − b2p2 + b3p3 − b4p4 = 0

Let a1 = b1, a2 = −b2, a3 = b3, a4 = −b4, and we must have
∑4

i=1 ai = 0, and
∑4

i=1 aipi = 0.
Since b1 + b3 = 1 they must not be both zero, and hence a1, a2, a3, a4 are not all zero.

3. If we have a1 + a3 = 0, we must also have a2 + a4 = 0. Let a1 = λ, a2 = µ, a3 = −λ, a4 = −µ, we
have

λ(p1 − p3) = µ(p2 − p4).

But since P1P3 and P2P4 intersect at one point, this means they must not be parallel, and hence
one of λ and µ must be zero. But if one of them is zero the other one has to be as well, which
means all of ai are zero, which contradicts with given.

Still, let b1 = a1, b2 = −a2, b3 = a3, b4 = −a4. From given, we must have b1 + b3 = b2 + b4 = T .
By rearrangement of the given vector equation, we have

b1p1 + b3p3 = b2p2 + b4p4.

If we divide both sides by T , we have

b1
b1 + b3

p1 +
b3

b1 + b3
p3 =

b2
b2 + b4

p2 +
b4

b2 + b4
p4.

The position vector represented on the left-hand side must be on the line P1P3, and on the right-
hand side must be on the line P2P4. But they have a unique intersection at Q, which means both
must represent the position vector of Q, which is exactly

a1p1 + a3p3

a1 + a3
.

It must be true that a3 : a1 = P1Q : QP3. This is because

q = p1 +
a3

a1 + a3
(p3 − p1).

The magnitude of p3 − p1 is the length P1P3 and the distance Q has ’travelled’ along P1P3 from
P1 is a3

a1+a3
of the total.
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This means
P1Q =

a3
a1 + a3

P1P3, P3Q =
a1

a1 + a3
P1P3.

Similarly,

P2Q =
a4

a2 + a4
P2P4, P4Q =

a2
a2 + a4

P2P4.

From the first part of the question we have

a1a3
(a1 + a3)2

(P1P3)
2 =

a2a4
(a2 + a4)2

(P2P4)
2.

But since a1+a2+a3+a4 = 0, a1+a3 = −a2−a4, and hence (a1+a3)
2 = (a2+a4)

2. This means

a1a3(P1P3)
2 = a2a4(P2P4)

2,

as desired.
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2014.3 Question 8

Notice that there are (kn+1 − 1) − kn + 1 = kn+1 − kn = kn(k − 1) items in the summation. By the
monotonic condition of the sequence in the question, we know that all the elements in the sum are greater
than or equal to f(kn) and less than f(kn+1). This immediately proves the inequality.

1. Let k = 2. Since f is decreasing, we know that for all non-negative n, we have

2n · (2− 1) · 1

2n+1
≤

2n+1−1∑
r=2n

1

r
≤ 2n · (2− 1) · 1

2n
,

which simplifies to

1

2
1 ≤

2n+1−1∑
r=2n

1

r
≤ 1.

Summing this from n = 0 to n = N (which contains (N + 1) such inequalities) yields

N + 1

2
≤

2N+1−1∑
r=1

1

r
≤ N + 1,

as desired.

We can show that this sum can be arbitrarily big by letting N → ∞, and the lower bound of the
sum N+1

2 → ∞. This means the infinite sum must diverge.

2. Let k = 2. Since f is decreasing, we know that for all non-negative n, we have

2n+1−1∑
r=2n

1

r3
≤ 2n · (2− 1) · 1

(2n)3
=

1

22n
=

1

4n
.

Summing this from n = 0 up to n = N gives

2N+1−1∑
r=1

1

r3
≤

N∑
n=0

1

4n
=

1− 1
4N

1− 1
4

=
4

3
·
(
1− 1

4N+1

)
.

Let N → ∞, the weak inequality remains. This gives

∞∑
r=1

1

r3
≤ 4

3
· 1 =

4

3

as desired.

3. Using a probabilistic argument, from the set of three-digit non-negative integers (allowing leading-
zeros) {0, 1, 2, . . . , 999}, each digit has a 1

10 chance of being 2, and hence 9
10 chance of not being 2.

This means that the number of elements in this set not being 2 is equal to

103 ·
(

9

10

)n

= 93.

But 0 is counted in the 93 as well, which is not included in S(1000). Therefore, S(1000) = 93 − 1.

This method applies in general to n-digit numbers and for S(10n) = 9n − 1 as well.

Let f(i) be the i-th integer not having 2 in the decimal expansion in increasing order, and hence

S(n) = {f(i) | i ∈ N, f(i) < n},

and

σ(n) =

S(n)∑
i=1

1

f(i)
.
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Let k = 9. Notice that f(9n) = f(S(10n) + 1) = 10n since 10n is must be the next number
satisfying the condition. Also, since f must be increasing on the integers, we have x 7→ 1

f(x) is

decreasing on the integers, and hence, for non-negative integers n

9n+1−1∑
r=9n

1

f(r)
≤ 9n(9− 1)

1

f(9n)
= 8 ·

(
9

10

)n

.

Summing this from n = 0 to n = N gives

σ(10N+1) =

9N+1−1∑
r=0

1

f(r)
≤ 8

N∑
n=0

(
9

10

)n

= 80

[
1−

(
9

10

)N+1
]
< 80.

For all n ∈ N, there exists N ∈ N such that 10N+1 ≥ n, and since σ is increasing, we must have
80 > σ(10N+1) ≥ σ(n), which finishes the proof.
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2014.3 Question 12

1. Notice that xm is such that

P(X ≤ xm) = F (xm) =
1

2
.

ym is such that

P(Y ≤ ym) = P(eX ≤ ym) = P(X ≤ ln ym) = F (ln ym) =
1

2
.

Therefore,

F (xm) = F (ln ym) =
1

2
.

Therefore, xm = ln ym, and ym = exm .

2. Notice that the cumulative distribution function G(y) of Y satisfies that

G(y) = P(Y ≤ y) = P(eX ≤ y) = P(X ≤ ln y) = F (ln y).

Therefore, differentiating both sides w.r.t. y gives that the probability density function of Y , g(y)
satisfies

g(y) =
1

y
f(ln y),

as desired.

The mode of Y , λ must satisfy that g′(λ) = 0. By quotient rule, we have

g′(y) =
f ′(ln y) · 1

y · y − 1 · f(ln y)
y2

=
f ′(ln y)− f(ln y)

y2
.

Therefore, g′(λ) = 0 implies that f ′(lnλ) = f(lnλ) as desired.

3. This is because it is simply a horizontal shift of f(x) in the positive x direction by σ2 (i.e. this
is the integral of f(x − σ2)), and this improper integral on R will evaluate to the same value as
integrating f(x), which is simply 1.

Expanding the exponent of the integrand gives

− (x− µ− σ2)2

2σ2
= − (x− µ)2 + σ4 − 2σ2(x− µ)

2σ2

= − (x− µ2)

2σ2
− 1

2
σ2 + (x− µ).

Hence,

E(Y ) = E(ex)

=
1

σ
√
2π

∫ ∞

−∞
ex · e−(x−µ)2/(2σ2) dx

=
1

σ
√
2π

∫ ∞

−∞
e−(x−µ)2/(2σ2)+x dx

=
1

σ
√
2π

· eµ+ 1
2σ

2

∫ ∞

−∞
e−(x−µ)2/(2σ2)+x− 1

2σ
2−µ dx

= eµ+
1
2σ

2

· 1

σ
√
2π

∫ ∞

−∞
e−(x−µ−σ)2/(2σ2) dx

= eµ+
1
2σ

2

,

as desired.
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4. When X ∼ N(µ, σ2), xm = µ and therefore ym = eµ. Differentiating the p.d.f. for X gives

f ′(x) =
1

σ
√
2π

· −2(x− µ)

2σ2
· e−(x−µ)2/(2σ2)

= − x− µ

σ2 · σ
√
2π

· e−(x−µ)2/(2σ2).

Therefore, f(x) = f ′(x) when −x−µ
σ2 = 1. This is precisely when x = µ− σ2, which means

λ = eµ−σ2

.

Now, since E(Y ) = eµ+
1
2σ

2

, ym = eµ, λ = eµ−σ2

, and σ ̸= 0 so σ2 > 0, this gives the result

λ < ym < E(Y )

as desired.
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2014.3 Question 13

1. Let this condition be C1. Since the game ends in the first round, the score must remain to be zero,
and therefore

P(N = 0 | C1) = 1,

and for all other n ∈ N where n ̸= 0,

P(N = n | C1) = 0.

This means the p.g.f. for N conditional under C1 is just simply G(t | C1) = P(N = 0 | C1) · t0 = 1.

2. Denote this condition be C2. Since in the first round, the game score does not change, and after
the first round it is just as if this was a new game, so for all n ∈ N ∪ {0}, we must have

P(N = n | C2) = P(N = n),

and hence

G(t | C2) =

∞∑
n=0

P(N = n | C2) · xn =

∞∑
n=0

P(N = n) · tn = G(t).

3. Denote the condition where the score is increased by 1 as C3. Since in the first round the game
score increased by one, and after the first round it is just as if this was a new game, so for all
n ∈ N, we must have

P(N = n | C3) = P(N = n− 1),

and
P(N = 0 | C3) = 0.

Hence,

G(t | C3) =

∞∑
n=0

P(N = n | C3) · xn =

∞∑
n=1

P(N = n− 1) · tn = t ·
∞∑

n=0

P(N = n) · tn = tG(t).

Since in the first round, one of C1, C2 and C3 must happen, we must have that

G(t) = P(C1) ·G(t | C1) + P(C2) ·G(t | C2) + P(C3) ·G(t | C3) = a+ bG(t) + ctG(t).

Hence, rearranging gives
(1− b− ct)G(t) = a,

and hence

G(t) =
a

(1− b)− ct
=

a/(1− b)

1− ct/(1− b)

Hence, using the infinite expansion, we have

G(t) =
a

1− b
·

∞∑
k=0

(
ct

1− b

)k

=

∞∑
k=0

a

1− b
· ck

(1− b)k
· tk

=

∞∑
k=0

ack

(1− b)k+1
· tk.

But the coefficient before tn is precisely the probability P(N = n). This means

P(N = n) =
ack

(1− b)k+1
,

as desired.
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4. We know that µ = G′(1). We can find that

G′(t) =
ac

[(1− b)− ct]2
,

and evaluating this at t = 1 gives

µ = G′(1) =
ac

(1− b− c)2
=

ac

a2
=

c

a
.

Therefore, we have c = µa

P(N = n) =
ack

(a+ c)k+1

=
a(µa)k

(a+ µa)k+1

=
aµkak

ak+1(1 + µ)k+1

=
µk

µk+1
,

as desired.
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