Year 2013

2013.3 Paper	3																		78
2013.3.1	Question	1.																	79
2013.3.2	Question	2.																	82
2013.3.3	Question	3.																	84
2013.3.4	Question	4.																	87
2013.3.5	Question	5.																	90
2013.3.6	Question	6.																	92
2013.3.7	Question	7.																	94
2013.3.8	Question	8.																	96
2013.3.12	Question	12																	98
2013.3.13	Question	13																	101

2013 Paper 3

2013.3.1	Question $1 \ldots$	 					 										79
2013.3.2	Question $2 \ldots$	 					 										82
2013.3.3	Question $3 \ldots$	 					 										84
2013.3.4	Question 4 $$	 					 	•			•						87
2013.3.5	Question 5 \ldots	 					 	•									90
2013.3.6	Question 6 \ldots	 					 	•									92
2013.3.7	Question 7 $$	 				•	 	•		•	•	•					94
2013.3.8	Question 8 \ldots	 				•	 	•		•	•	•					96
2013.3.12	Question 12 \cdot .	 					 	•									98
2013.3.13	Question 13	 					 										101

Since $t = \tan \frac{1}{2}x$, we have

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2}\sec^2\frac{1}{2}x = \frac{1}{2}(1+\tan^2\frac{1}{2}x) = \frac{1}{2}(1+t^2).$$

By the tangent double-angle formula, we have

$$\tan x = \frac{2t}{1-t^2},$$

and hence

$$\cot x = \frac{1 - t^2}{2t}.$$

Therefore,

$$\csc^2 x = 1 + \cot^2 x = 1 + \frac{(1-t^2)^2}{(2t)^2} = \frac{(1+t^2)^2}{(2t)^2}$$

which means

$$\sin^2 x = \frac{(2t)^2}{(1+t^2)^2},$$

and hence

$$|\sin x| = \frac{2t}{1+t^2}.$$

What remains is to consider the sign. Notice that $t \ge 0$ if and only if

$$\frac{x}{2} \in \bigcup_{k \in \mathbb{Z}} \left[k\pi, k\pi + \frac{\pi}{2} \right),$$

which is

$$x \in \bigcup_{k \in \mathbb{Z}} \left[2k\pi, 2k\pi + \pi \right),$$

but this is also precisely if and only if $\sin x \ge 0$.

This means $\sin x$ must take the same sign as t, and hence

$$\sin x = \frac{2t}{1+t^2}.$$

Using this substitution, we have when x = 0, t = 0 and when $x = \frac{1}{2}\pi, t = 1$, and also

$$\mathrm{d}x = \frac{2\,\mathrm{d}t}{1+t^2}.$$

This means

$$\begin{split} I &= \int_{0}^{\frac{1}{2}\pi} \frac{\mathrm{d}x}{1+a\sin x} \\ &= \int_{0}^{1} \frac{\frac{2\,\mathrm{d}t}{1+t^{2}}}{1+a\cdot\frac{2t}{1+t^{2}}} \\ &= \int_{0}^{1} \frac{2\,\mathrm{d}t}{1+2at+t^{2}} \\ &= \int_{0}^{1} \frac{2\,\mathrm{d}t}{(t+a)^{2}+(1-a^{2})} \\ &= \frac{2}{1-a^{2}} \int_{0}^{1} \frac{\mathrm{d}t}{\left(\frac{t+a}{\sqrt{1-a^{2}}}\right)^{2}+1} \\ &= \frac{2}{1-a^{2}} \cdot \sqrt{1-a^{2}} \cdot \left[\arctan\left(\frac{t+a}{\sqrt{1-a^{2}}}\right)\right]_{0}^{1} \\ &= \frac{2}{\sqrt{1-a^{2}}} \cdot \left[\arctan\left(\frac{1+a}{\sqrt{1-a^{2}}}\right) - \arctan\left(\frac{a}{\sqrt{1-a^{2}}}\right)\right] \end{split}$$

But notice that

$$\arctan\left(\frac{1+a}{\sqrt{1-a^2}}\right) - \arctan\left(\frac{a}{\sqrt{1-a^2}}\right) = \arctan\left(\frac{\frac{1+a}{\sqrt{1-a^2}} - \frac{a}{\sqrt{1-a^2}}}{1 + \frac{1+a}{\sqrt{1-a^2}} \cdot \frac{a}{\sqrt{1-a^2}}}\right)$$
$$= \arctan\left(\frac{\frac{1}{\sqrt{1-a^2}}}{1 + \frac{a+a^2}{1-a^2}}\right)$$
$$= \arctan\left(\frac{\sqrt{1-a^2}}{(1-a^2) + (a+a^2)}\right)$$
$$= \arctan\left(\frac{\sqrt{1-a} \cdot \sqrt{1+a}}{1+a}\right)$$
$$= \arctan\left(\frac{\sqrt{1-a}}{\sqrt{1+a}}\right),$$

and hence

$$I = \frac{2}{\sqrt{1-a^2}} \arctan\left(\frac{\sqrt{1-a}}{\sqrt{1+a}}\right),\,$$

as desired. We have

 $I_{n+1} + 2I_n = \int_0^{\frac{1}{2}\pi} \frac{\sin^{n+1} x + 2\sin^n x}{2 + \sin x} \, \mathrm{d}x$ $= \int_0^{\frac{1}{2}\pi} \sin^n x \, \mathrm{d}x.$

Therefore, we have

$$I_{3} + 2I_{2} = \int_{0}^{\frac{1}{2}\pi} \sin^{2} x \, dx$$

= $\int_{0}^{\frac{1}{2}\pi} \frac{1 - \cos 2x}{2} \, dx$
= $\left[\frac{1}{2} \cdot x - \frac{1}{4} \sin 2x\right]_{0}^{\frac{1}{2}\pi}$
= $\left(\frac{1}{2} \cdot \frac{\pi}{2} - \frac{1}{4} \sin \pi\right) - \left(\frac{1}{4} \sin 0 - \frac{1}{2} \cdot 0\right)$
= $\frac{\pi}{4}$,

$$I_{2} + 2I_{1} = \int_{0}^{\frac{1}{2}\pi} \sin x \, dx$$

= $[-\cos x]_{0}^{\frac{1}{2}\pi}$
= $\left(-\cos \frac{1}{2}\pi\right) - (-\cos 0)$
= $(0) - (-1)$
= 1,

and

$$I_1 + 2I_0 = \int_0^{\frac{1}{2}\pi} \sin^0 x \, \mathrm{d}x$$
$$= [x]_0^{\frac{1}{2}\pi}$$
$$= \frac{1}{2}\pi.$$

$$I_{0} = \int_{0}^{\frac{1}{2}\pi} \frac{\mathrm{d}x}{2 + \sin x}$$

= $\frac{1}{2} \int_{0}^{\frac{1}{2}\pi} \frac{\mathrm{d}x}{1 + \frac{1}{2}\sin x}$
= $\frac{1}{2} \cdot \frac{2}{\sqrt{1 - (\frac{1}{2})^{2}}} \cdot \arctan \frac{\sqrt{1 - \frac{1}{2}}}{\sqrt{1 + \frac{1}{2}}}$
= $\frac{1}{2} \cdot \frac{4}{\sqrt{3}} \cdot \arctan \frac{1}{\sqrt{3}}$
= $\frac{2}{\sqrt{3}} \cdot \frac{\pi}{6}$
= $\frac{\pi}{3\sqrt{3}}$.

Hence,

$$I_{3} = \frac{\pi}{4} - 2I_{2}$$

$$= \frac{\pi}{4} - 2 \cdot (1 - 2I_{1})$$

$$= \frac{\pi}{4} - 2 + 4I_{1}$$

$$= \frac{\pi}{4} - 2 + 4\left(\frac{1}{2}\pi - 2I_{0}\right)$$

$$= \frac{\pi}{4} - 2 + 2\pi - 8I_{0}$$

$$= \frac{9\pi}{4} - 2 - \frac{8\pi}{3\sqrt{3}}$$

$$= \left(\frac{9}{4} - \frac{8}{3\sqrt{3}}\right)\pi - 2.$$

We must have

$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}}{\mathrm{d}x} \cdot \frac{\arcsin x}{\sqrt{1 - x^2}} \\ &= \frac{1}{1 - x^2} \cdot \left(\frac{1}{\sqrt{1 - x^2}} \cdot \sqrt{1 - x^2} - \arcsin x \cdot (-2x) \cdot \left(\frac{1}{2}\right) \cdot \frac{1}{\sqrt{1 - x^2}}\right) \\ &= \frac{1}{1 - x^2} \cdot \left(1 + x \cdot \frac{\arcsin x}{\sqrt{1 - x^2}}\right) \\ &= \frac{1}{1 - x^2} \cdot (1 + xy) \,, \end{aligned}$$

which gives

$$(1 - x^2)\frac{\mathrm{d}y}{\mathrm{d}x} - xy - 1 = (1 + xy) - xy - 1 = 0$$

as desired.

Differentiating both sides of this equation w.r.t. x gives

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \cdot (1 - x^2) - 2x \cdot \frac{\mathrm{d}y}{\mathrm{d}x} - y - x\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

which combined gives

$$(1-x^2) \cdot \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 3x \cdot \frac{\mathrm{d}y}{\mathrm{d}x} - y = 0.$$

If we extend the definition of the differentiation operator to

$$\frac{\mathrm{d}^0 y}{\mathrm{d}x^0} = y,$$

then this precisely proves the desired statement for the case n = 0 since 2n + 3 = 3 and $(n + 1)^2 = 1$, and we will prove the desired statement for all non-negative integer n. The base case is shown as above.

Now, assume the given holds for some n = k where k is a non-negative integer, i.e.

$$(1-x^2) \cdot \frac{\mathrm{d}^{k+2}y}{\mathrm{d}x^{k+2}} - (2k+3)x \cdot \frac{\mathrm{d}^{k+1}y}{\mathrm{d}x^{k+1}} - (k+1)^2 \cdot \frac{\mathrm{d}^k y}{\mathrm{d}x^k} = 0,$$

we aim to show that the same holds for n = k + 1.

Differentiating both sides with respect to x gives

$$(-2x) \cdot \frac{\mathrm{d}^{k+2}y}{\mathrm{d}x^{k+2}} + (1-x^2) \cdot \frac{\mathrm{d}^{k+3}y}{\mathrm{d}x^{k+3}} - (2k+3) \cdot \frac{\mathrm{d}^{k+1}y}{\mathrm{d}x^{k+1}} - (2k+3)x \cdot \frac{\mathrm{d}^{k+2}y}{\mathrm{d}x^{k+2}} - (k+1)^2 \cdot \frac{\mathrm{d}^{k+1}y}{\mathrm{d}x^{k+1}} = 0,$$

which then simplifies to

$$(1-x^2) \cdot \frac{\mathrm{d}^{k+3}y}{\mathrm{d}x^{k+3}} - (2k+5)x \cdot \frac{\mathrm{d}^{k+2}y}{\mathrm{d}x^{k+2}} - (k^2+4k+4) \cdot \frac{\mathrm{d}^{k+1}y}{\mathrm{d}x^{k+1}} = 0$$

But notice that n+2 = (k+1)+2 = k+3, n+1 = (k+1)+1 = k+2, $(n+1)^2 = (k+2)^2 = k^2+4k+4$, 2n+3 = 2(k+1)+3 = 2k+5, so this is exactly the statement when n = k+1, which finishes our inductive step.

Hence, by the Principle of Mathematical Induction, we can conclude that the original statement holds for any non-negative integer n, and hence for any positive integer n.

We have that

$$y|_{x=0} = \frac{\arcsin 0}{\sqrt{1-0^2}} = \frac{0}{1} = 0.$$

and evaluating the equation on the first derivative at x = 0 gives

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x=0} = 1$$

Evaluating the proven equation at x = 0 gives

$$\left.\frac{\mathrm{d}^{n+2}y}{\mathrm{d}x^{n+2}}\right|_{x=0} = (n+1)^2 \left.\frac{\mathrm{d}^n y}{\mathrm{d}x^n}\right|_{x=0}.$$

Using this, we can conclude that

$$\left.\frac{\mathrm{d}^{2r}y}{\mathrm{d}x^{2r}}\right|_{x=0} = 0$$

for all $r \ge 0$ where r is an integer, since it is 0 when n = 0, and that

$$\frac{\mathrm{d}^{2r+1}y}{\mathrm{d}x^{2r+1}}\bigg|_{x=0} = ((2r)!!)^2 = 2^{2r} \cdot (r!)^2$$

for all $r \ge 0$ where r is an integer, by mathematical induction.

Hence, the MacLaurin Series for $\frac{\arcsin x}{\sqrt{1-x^2}}$, must be

$$\begin{aligned} \frac{\arccos x}{\sqrt{1-x^2}} &= \sum_{k=0}^{\infty} \left. \frac{\frac{\mathrm{d}^k y}{\mathrm{d}x^k} \right|_{x=0}}{k!} \cdot x^k \\ &= \sum_{r=0}^{\infty} \left. \frac{\frac{\mathrm{d}^{2r} y}{\mathrm{d}x^{2r}} \right|_{x=0}}{(2r)!} \cdot x^{2r} + \sum_{r=0}^{\infty} \left. \frac{\frac{\mathrm{d}^{2r+1} y}{\mathrm{d}x^{2r+1}} \right|_{x=0}}{(2r+1)!} \cdot x^{2r+1} \\ &= 0 + \sum_{r=0}^{\infty} \frac{2^{2r} \cdot (r!)^2}{(2r+1)!} \cdot x^{2r+1} \\ &= \sum_{r=0}^{\infty} \frac{2^{2r} \cdot (r!)^2}{(2r+1)!} \cdot x^{2r+1}. \end{aligned}$$

This means the general term for even powers of x is zero, and the general term for odd powers of x is

$$\frac{2^{2r} \cdot (r!)^2}{(2r+1)!} \cdot x^{2r+1}$$

where r is any non-negative integer.

The infinite sum can be expressed as

$$\sum_{r=0}^{\infty} \frac{(r!)^2}{(2r+1)!} = 2 \cdot \sum_{r=0}^{\infty} \frac{2^{2r} \cdot (r!)^2}{(2r+1)!} \cdot \left(\frac{1}{2}\right)^{2r+1},$$

which is precisely double the value of

$$\left[\frac{\arcsin x}{\sqrt{1-x^2}}\right]_{x=\frac{1}{2}} = \frac{\arcsin \frac{1}{2}}{\sqrt{1-\left(\frac{1}{2}\right)^2}} = \frac{\pi/6}{\sqrt{3}/2} = \frac{\pi}{3\sqrt{3}},$$

Hence, the sum evaluates to $\frac{2\pi}{3\sqrt{3}}$.

Since $\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 + \mathbf{4}_4 = \mathbf{0}$, we must have

$$0 = \mathbf{0} \cdot \mathbf{0}$$

= $(\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 + \mathbf{4}_4) \cdot (\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 + \mathbf{4}_4)$
= $\sum_{i=1}^{4} \mathbf{p}_i \cdot \mathbf{p}_i + 2 \sum_{i=1}^{3} \sum_{j=i+1}^{4} \mathbf{p}_i \cdot \mathbf{p}_j.$

Since P_i are on the unit sphere, we must have $\mathbf{p}_i \cdot \mathbf{p}_i = 1$. By symmetry, for all $i \neq j$,

 $\mathbf{p}_i \cdot \mathbf{p}_j$

must be some real constant, say k.

Hence,

$$0 = 4 \cdot 1 + 2 \cdot 6 \cdot k,$$

which solves to

$$k = -\frac{1}{3},$$

as desired.

1. We have

$$\sum_{i=1}^{4} (XP_i)^2 = \sum_{i=1}^{4} (\mathbf{p}_i - \mathbf{x}) \cdot (\mathbf{p}_i - \mathbf{x})$$
$$= \sum_{i=1}^{4} (\mathbf{p}_i \cdot \mathbf{p}_i - 2\mathbf{x} \cdot \mathbf{p}_i + \mathbf{x} \cdot \mathbf{x})$$
$$= \sum_{i=1}^{4} \mathbf{p}_i \cdot \mathbf{p}_i - 2\mathbf{x} \cdot \sum_{i=1}^{4} + 4 \cdot \mathbf{x} \cdot \mathbf{x}$$
$$= \sum_{i=1}^{4} 1 - 2\mathbf{x} \cdot \mathbf{0} + 4 \cdot 1$$
$$= 4 - 0 + 4$$
$$= 8$$

2. Since $P_1(0, 0, 1)$ and $P_2(a, 0, b)$, we must have

$$\mathbf{p}_1 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \mathbf{p}_2 = \begin{pmatrix} a\\0\\b \end{pmatrix},$$

and hence

$$\mathbf{p}_1 \cdot \mathbf{p}_2 = 0 \cdot a + 0 \cdot 0 + 1 \cdot b = b = -\frac{1}{3}.$$

We must have

$$|\mathbf{p}_2| = \sqrt{a^2 + 0^2 + b^2} = \sqrt{a^2 + b^2} = 1,$$

which means

$$a = \frac{2\sqrt{2}}{3},$$

as desired.

The z-component of \mathbf{p}_3 and \mathbf{p}_4 must also be $-\frac{1}{3}$, due to the dot product with $vectp_1$ being equal to the z-component must also be equal to $-\frac{1}{3}$.

Let

$$\mathbf{p}_3 = \begin{pmatrix} c \\ d \\ -\frac{1}{3} \end{pmatrix},$$

then from $\sum_{i=1}^{4} \mathbf{p}_i = \mathbf{0}$, we have

$$\mathbf{p}_4 = \begin{pmatrix} -c - \frac{2\sqrt{2}}{3} \\ -d \\ -\frac{1}{3} \end{pmatrix}.$$

Since $\mathbf{p}_3 \cdot \mathbf{p}_2 = -\frac{1}{3}$, we have

$$\frac{2\sqrt{2}}{3} \cdot c + 0 \cdot d + \left(-\frac{1}{3}\right) \cdot \left(-\frac{1}{3}\right) = -\frac{1}{3},$$

and hence

$$\frac{2\sqrt{2}}{3}c = -\frac{4}{9},$$

 $6\sqrt{2}c = -4,$

which means

and hence

$$c = -\frac{4}{6\sqrt{2}} = -\frac{\sqrt{2}}{3}$$

Now, since $\mathbf{p}_3 \cdot \mathbf{p}_4 = -\frac{1}{3}$, we have

$$c \cdot \left(-c - \frac{2\sqrt{2}}{3}\right) + d \cdot \left(-d\right) + \left(-\frac{1}{3}\right) \cdot \left(-\frac{1}{3}\right) = -\frac{1}{3}.$$

Therefore,

$$\left(-\frac{\sqrt{2}}{3}\right)\cdot\left(-\frac{\sqrt{2}}{3}\right)-d^2=-\frac{4}{9},$$

 $d^2 = \frac{2}{3},$

and hence

giving

$$d = \pm \frac{\sqrt{2}}{\sqrt{3}}.$$

Hence,

$$P_3\left(-\frac{\sqrt{2}}{3},\pm\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{3}\right), P_4\left(-\frac{\sqrt{2}}{\sqrt{3}},\pm\frac{\sqrt{2}}{3},-\frac{1}{3}\right).$$

3. We have

$$\sum_{i=1}^{4} (XP_i)^4 = \sum_{i=1}^{4} [(\mathbf{p}_i - \mathbf{x}) \cdot (\mathbf{p}_i - \mathbf{x})]^2$$
$$= \sum_{i=1}^{4} (\mathbf{p}_i \cdot \mathbf{p}_i - 2\mathbf{x} \cdot \mathbf{p}_i + \mathbf{x} \cdot \mathbf{x})^2$$
$$= \sum_{i=1}^{4} (1 + 1 - 2\mathbf{x} \cdot \mathbf{p}_i)^2$$
$$= \sum_{i=1}^{4} (2 - 2\mathbf{x} \cdot \mathbf{p}_i)^2$$
$$= 4\sum_{i=1}^{4} (1 - \mathbf{x} \cdot \mathbf{p}_i)^2.$$

Let X(x, y, z). We have

$$\begin{split} \sum_{i=1}^{4} \left(XP_i \right)^4 &= 4 \sum_{i=1}^{4} \left(1 - \mathbf{x} \cdot \mathbf{p}_i \right)^2 \\ &= 4 \left[\left(\left(1 - \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right)^2 + \left(1 - \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} \frac{2\sqrt{2}}{3} \\ 0 \\ -\frac{1}{3} \end{pmatrix} \right)^2 \right] \\ &+ \left(1 - \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} -\frac{\sqrt{2}}{3} \\ -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{1}{3} \end{pmatrix} \right)^2 + \left(1 - \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} -\frac{\sqrt{2}}{3} \\ -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{\sqrt{2}}{\sqrt{3}} \\ -\frac{1}{3} \end{pmatrix} \right)^2 \right] \\ &= 4 \left[\left(1 - z \right)^2 + \left(1 - \frac{2\sqrt{2}}{3}x + \frac{1}{3}z \right)^2 \\ &+ \left(1 + \frac{\sqrt{2}}{3}x - \frac{\sqrt{2}}{\sqrt{3}}y + \frac{1}{3}z \right)^2 + \left(1 + \frac{\sqrt{2}}{3}x + \frac{\sqrt{2}}{\sqrt{3}}y + \frac{1}{3}z \right)^2 \right] \\ &= 4 \left(4 + \frac{4}{3}x^2 + \frac{4}{3}y^2 + \frac{4}{3}z^2 \right) \\ &= 4 \left[4 + \frac{4}{3} \right] \\ &= 4 \cdot \frac{16}{3} \\ &= \frac{64}{3} \end{split}$$

is a constant, independent of the position of X.

We notice

$$(z - \exp(i\theta))(z - \exp(-i\theta)) = z^2 - (\exp(i\theta) + \exp(-i\theta))z + 1 = z^2 - 2z\cos\theta + 1.$$

The 2*n*-th roots of -1 are z_r , where $r = 0, 1, \ldots, 2n - 1$,

$$z_r = \exp\left(i\left(\frac{\pi}{2n} + \frac{2r\pi}{2n}\right)\right) = \exp\left(i\pi \cdot \frac{1+2r}{2n}\right),$$

and hence

$$z^{2n} + 1 = \prod_{r=0}^{2n-1} (z - z_r)$$

$$= \left[\prod_{r=0}^{n-1} \left(z - \exp\left(i\pi \cdot \frac{1+2r}{2n}\right)\right)\right] \cdot \left[\prod_{r=n}^{2n-1} \left(z - \exp\left(i\pi \cdot \frac{1+2r}{2n}\right)\right)\right]$$

$$= \left[\prod_{r=0}^{n-1} \left(z - \exp\left(i\pi \cdot \frac{1+2r}{2n}\right)\right)\right] \cdot \left[\prod_{r=0}^{n-1} \left(z - \exp\left(i\pi \cdot \frac{1+2(2n-1-r)}{2n}\right)\right)\right]$$

$$= \left[\prod_{r=0}^{n-1} \left(z - \exp\left(i\pi \cdot \frac{1+2r}{2n}\right)\right)\right] \cdot \left[\prod_{r=0}^{n-1} \left(z - \exp\left(i\pi \cdot \frac{-1-2r}{2n}\right)\right)\right]$$

$$= \prod_{r=0}^{n-1} \left(z - \exp\left(i\pi \cdot \frac{1+2r}{2n}\right)\right) \left(z - \exp\left(i\pi \cdot \frac{-1-2r}{2n}\right)\right)$$

$$= \prod_{r=0}^{n-1} \left(z^2 - 2z\cos\left(\frac{2r+1}{2n}\pi\right) + 1\right)$$

1. Let z = i, since n is even, $z^{2n} = i^{2n} = (i^2)^n = (-1)^n = 1$.

$$2 = z^{2n} + 1$$

= $\prod_{r=1}^{n} \left(i^2 - 2i \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right)$
= $\prod_{r=1}^{n} 2i \cos\left(\frac{2r-1}{2n}\pi\right)$
= $(2i)^n \prod_{r=1}^{n} \cos\left(\frac{2r-1}{2n}\pi\right)$
= $2^n (-1)^{\frac{n}{2}} \prod_{r=1}^{n} \cos\left(\frac{2r-1}{2n}\pi\right)$,

and therefore

$$\prod_{r=1}^{n} \cos\left(\frac{2r-1}{2n}\pi\right) = 2^{1-n}(-1)^{-\frac{n}{2}} = 2^{1-n}(-1)^{\frac{n}{2}}.$$

2. Notice that in the product where n is odd, let $k = \frac{n+1}{2}$, then the term of this product will be

$$z^{2} - 2z \cos\left(\frac{(2k-1)\pi}{2n}\right) + 1 = z^{2} - 2z \cos\left(\frac{(n+1-1)\pi}{2n}\right) + 1$$
$$= z^{2} - 2z \cos\frac{\pi}{2} + 1$$
$$= z^{2} + 1.$$

Therefore, we have

$$(z^{2}+1)\sum_{r=0}^{n-1}(-1)^{r}z^{2r} = z^{2}+1$$

$$=\prod_{r=1}^{n}\left(z^{2}-2z\cos\left(\frac{2r-1}{2n}\pi\right)+1\right)$$

$$=\prod_{r=1}^{\frac{n-1}{2}}\left(z^{2}-2z\cos\left(\frac{2r-1}{2n}\pi\right)+1\right)(z^{2}+1)$$

$$\prod_{r=\frac{n+3}{2}}^{n}\left(z^{2}-2z\cos\left(\frac{2r-1}{2n}\pi\right)+1\right)$$

$$=\prod_{r=1}^{\frac{n-1}{2}}\left(z^{2}-2z\cos\left(\frac{2r-1}{2n}\pi\right)+1\right)(z^{2}+1)$$

$$\prod_{r=1}^{\frac{n-1}{2}}\left(z^{2}-2z\cos\left(\frac{2r-1}{2n}\pi\right)+1\right)(z^{2}+1)$$

$$\prod_{r=1}^{\frac{n-1}{2}}\left(z^{2}-2z\cos\left(\frac{2(n+1-r)-1}{2n}\pi\right)+1\right),$$

and hence

$$\sum_{r=0}^{n-1} (-1)^r z^{2r} = \prod_{r=1}^{\frac{n-1}{2}} \left(z^2 - 2z \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right) \left(z^2 - 2z \cos\left(\frac{2(n+1-r)-1}{2n}\pi\right) + 1 \right)$$
$$= \prod_{r=1}^{\frac{n-1}{2}} \left(z^2 - 2z \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right) \left(z^2 - 2z \cos\left(\frac{2n-2r+1}{2n}\pi\right) + 1 \right)$$
$$= \prod_{r=1}^{\frac{n-1}{2}} \left(z^2 - 2z \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right) \left(z^2 + 2z \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right).$$

Let z = i, we have

LHS =
$$\sum_{r=0}^{n-1} (-1)^r i^{2r}$$

= $\sum_{r=0}^{n-1} (-1)^r (i^2)^r$
= $\sum_{r=0}^{n-1} (-1)^r (-1)^r$
= $\sum_{r=0}^{n-1} [(-1)(-1)]^r$
= $\sum_{r=0}^{n-1} 1$
= n ,

and

$$\begin{aligned} \text{RHS} &= \prod_{r=1}^{\frac{n-1}{2}} \left(i^2 - 2i \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right) \left(i^2 + 2i \cos\left(\frac{2r-1}{2n}\pi\right) + 1 \right) \\ &= \prod_{r=1}^{\frac{n-1}{2}} (-2i \cos\left(\frac{2r-1}{2n}\pi\right))(2i \cos\left(\frac{2r-1}{2n}\pi\right)) \\ &= \prod_{r=1}^{\frac{n-1}{2}} 4 \cos^2\left(\frac{2r-1}{2n}\pi\right) \\ &= 2^{n-1} \prod_{r=1}^{\frac{n-1}{2}} \cos^2\left(\frac{2r-1}{2n}\pi\right). \end{aligned}$$

This gives

$$\prod_{r=1}^{\frac{n-1}{2}} \cos^2\left(\frac{2r-1}{2n}\pi\right) = n2^{1-n},$$

exactly as desired.

1. Since $q^n N = p^n$, we have $p^n \mid q^n N$, and hence $p \mid q^n N$.

But since gcd(p,q) = 1, we must have $p \mid q^{n-1}N$. Repeating this step we will get $p \mid N$.

Let $N = pN_1$, we have $q^n pN_1 = p^n$, giving $q^n N_1 = p^{n-1}$. Repeating the same step will give $p \mid N_1$. Let $N_1 = pN_2$, we have $q^n pN_2 = p^{n-1}$, giving $q^n N_2 = p^{n-2}$. Repeating the same step will give $p \mid N_2$.

We can repeat this until we reach $q^n N_{n-1} = p$ from which we can conclude $p \mid N_{n-1}$.

So
$$N_{n-1} = kp$$
 for some $k \in \mathbb{N}$.

But since $N_t = pN_{t+1}$, we can conclude that $N_1 = kp^{n-1}$ and hence

$$N = pN_1 = kp^n$$

as desired.

Hence, we have $q^n k p^n = p^n$ which gives $q^n k = 1$. B33gut this means q^n and k must both be one since $q, k \in \mathbb{N}$. Hence, q = 1.

Assume, for the sake of contradiction, that $\sqrt[n]{N}$ is a rational number that is not a positive integer. Let

$$\sqrt[n]{N} = \frac{p}{q},$$

where $p, q \in \mathbb{N}$, gcd(p, q) = 1, and $q \neq 1$ (this is to ensure it is not a positive integer). Hence, by rearrangement, we have

$$q^n N = p^n,$$

and from what we have proved we must have q = 1, which contradicts with $q \neq 1$.

Hence, $\sqrt[n]{N}$ must either be a positive integer or must be irrational.

2. Since $a^a d^b = b^a c^b$, we know that $a^a \mid b^a c^b$. By the same reasoning as part 1, we know that $c^b = ka^a$ for some positive integer k_1 .

Hence, putting it back to the original equation, we have

$$d^b = k_1 b^a,$$

which implies $d^b \ge b^a$.

Since $a^a d^b = b^a c^b$, we know that $c^b \mid a^a d^b$. By the same reasoning as part 1, we know that $a^a = k_2 c^b$ for some positive integer k_2 .

Hence, putting it back to the original equation, we have

$$k_2 d^b = b^a,$$

which implies $b^a \ge d^b$.

This means $d^b = b^a$.

If a prime $p \mid d$, then $p \mid d^b$, and hence $p \mid b^a$.

Since $b^a = bb^{a-1}$, if p does not divide b, this means p and b must be co-prime (since p is a prime), then p must divide b^{a-1} , and repeating this argument eventually reaches p dividing $b^{a-(a-1)}$ which is a contradiction. So p must divide b.

Let $d = p^m d'$, and we must have p not divide d'. Similarly, let $b = p^n b'$, and we must have p does not divide b'.

Putting this back to $d^b = b^a$ shows

$$(p^m d')^b = (p^n b')^a,$$

and hence

$$p^{mb}d'^b = p^{na}b'^a,$$

and we must have p does not divide d'^b nor b'^a .

This means p^{mb} and p^{na} are exactly the highest powers of p that divide $d^b = b^a$, and hence

$$mb = na \iff b = \frac{na}{m}.$$

Since $p^n \mid b$, we must have $p^n \mid \frac{na}{m}$, and hence $p^n \mid na$. However, since a and b are co-prime, and p is a prime factor of b, then p must not divide a, and hence $p^n \mid n$. Hence, $p^n \leq n$.

Since $y^x > x$ for $y \ge 2$ and x > 0, and $p^n \le n$, we must have p < 2 or $n \le 0$. But since p is a prime, $p \ge 2$, so we must have $n \le 0$ and hence n = 0.

This means that the highest power of the prime number p that divides b is always 0, and hence b = 1.

Let

$$r = \frac{p}{q}$$

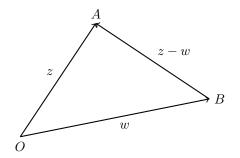
where $p, q \in \mathbb{N}, \operatorname{gcd}(p, q) = 1$. We have

$$r^r = \frac{r}{s}$$

for $r, s \in \mathbb{N}$, gcd(r, s) = 1. We have

$$\begin{pmatrix} \frac{p}{q} \end{pmatrix}^{\frac{p}{q}} = \frac{r}{s} \\ \begin{pmatrix} \frac{p}{q} \end{pmatrix}^{p} = \begin{pmatrix} \frac{r}{s} \end{pmatrix}^{q} \\ p^{p}s^{q} = q^{p}r^{q}.$$

Here, let a = p, b = q, c = r and d = s. We must have b = q = 1, which contradicts with $q \neq 1$. Therefore, $r = p \in \mathbb{N}$ is a positive integer.



In the diagram, due to the triangular inequality, we must have $AB \leq OA + OB$, and hence $|z - w| \leq |z| + |w|$ as desired.

1. We have

LHS =
$$|z - w|^2$$

= $(z - w)(z - w)^*$
= $(z - w)(z^* - w^*)$
= $zz^* + ww^* - zw^* - z^*w$
= $|z|^2 + |w|^2 - (E - 2|zw|)$
= $|z|^2 + 2|z||w| + |w|^2 - E$
= $(|z| + |w|)^2 - E$
= RHS,

exactly as desired.

Since |z - w|, |z| and |w| are all real, so must be $|z - w|^2$ and $(|z| + |w|)^2$, and so E must be real. Furthermore, we have

$$E = (|z| + |w|)^2 - |z - w|^2,$$

and by the inequality $|z| + |w| \ge |z - w| \ge 0$, we can conclude

$$(|z| + |w|)^2 \ge |z - w|^2$$
,

and hence E must be non-negative.

2. We have

LHS =
$$|1 - zw^*|^2$$

= $(1 - zw^*)(1 - zw^*)^*$
= $(1 - zw^*)(1 - z^*w)$
= $1 - z^*w - zw^* + zwz^*w^*$
= $1 - (E - 2|zw|) + zw(zw)^*$
= $1 - (E - 2|zw|) + |zw|^2$
= $1 + 2|zw| + |zw|^2 - E$
= $(1 + |zw|)^2 - E$
= RHS.

If we square both sides of the desired inequality (since both sides are non-negative this is reversible), we have

$$\frac{|z-w|^2}{|1-zw^*|^2} \le \frac{(|z|+|w|)^2}{(1+|zw|)^2},$$

which is equivalent to showing

$$\frac{\left(|z|+|w|\right)^2 - E}{\left(1+|zw|\right)^2 - E} \le \frac{\left(|z|+|w|\right)^2}{\left(1+|zw|\right)^2}.$$

We introduce a lemma. If $a > c \ge 0$ and a > b, then

$$\frac{b-c}{a-c} \le \frac{b}{a}.$$

The proof of this is as follows. We cross-multiply the inequality to give (since $a \ge a - c > 0$ this is reversible)

$$a(b-c) \le b(a-c),$$

which is equivalent to

 $ac \geq bc$,

and this must be true given $c \ge 0$ and a > b.

Now, since |z| > 1, |w| > 1, we have

$$(|z| - 1)(|w| - 1) = 1 + |zw| - |z| - |w| > 0,$$

which means

$$1 + |zw| > |z| + |w|,$$

and since both are non-negative we have

$$(1+|zw|)^2 > (|z|+|w|)^2.$$

Now, using this lemma, let $a = (1 + |zw|)^2$, $b = (|z| + |w|)^2$, c = E. a > b is as shown in above, and $c \ge 0$ is shown in part 1. a > c since $a - c = |1 - zw^*|^2 \ge 0$, and the equal sign holds if and only if $|zw^*| = |zw| = 1$, which must not hold if |z| > 1 and |w| > 1 since this gives |zw| = |z||w| > 1.

Therefore, we must have

$$\frac{(|z|+|w|)^2 - E}{(1+|zw|)^2 - E} \le \frac{(|z|+|w|)^2}{(1+|zw|)^2},$$

which gives exactly what is desired.

This also holds for |z| < 1 and |w| < 1 since from this (|z|-1)(|w|-1) > 0 still holds, so $(1+|zw|)^2 > (|z|+|w|)^2$ remains true, and |zw| = |z||w| < 1 so $|zw| \neq 1$ remains true. The exact argument is still valid.

1. We notice that

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 2 \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2y^3 \frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= 2 \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y^3\right)$$
$$= 0,$$

and so E must be constant.

So hence

$$E(x) = E(0)$$
$$= 0^{2} + \frac{1}{2}$$
$$= \frac{1}{2}.$$

Therefore,

$$y^4 = 2\left[E(x) - \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right] \le 2E(x) = 1,$$

and hence

$$|y(x)| \le 1.$$

2. We notice that

$$\begin{aligned} \frac{\mathrm{d}E}{\mathrm{d}x} &= 2 \cdot \frac{\mathrm{d}v}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 2\sinh v \frac{\mathrm{d}v}{\mathrm{d}x} \\ &= 2\frac{\mathrm{d}v}{\mathrm{d}x} \cdot \left(\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + \sinh v\right) \\ &= 2\frac{\mathrm{d}v}{\mathrm{d}x} \cdot \left(-x\frac{\mathrm{d}v}{\mathrm{d}x}\right) \\ &= -2x\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)^2, \end{aligned}$$

so when $x \ge 0$, since $\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)^2 \ge 0$, we must have

$$\frac{\mathrm{d}E}{\mathrm{d}x} \le 0.$$

Therefore, for $x \ge 0$, $E(x) \le E(0) = 0^2 + 2 \cosh \ln 3 = 3 + \frac{1}{3} = \frac{10}{3}$. Hence,

$$\cosh v(x) = \frac{E(x) - \left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)^2}{2}$$
$$\leq \frac{\frac{10}{3}}{2}$$
$$= \frac{5}{3}.$$

3. Notice that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2 = 2 \cdot \frac{\mathrm{d}v}{\mathrm{d}x} \cdot \frac{\mathrm{d}^2 v}{\mathrm{d}x^2}$$
$$= -2 \cdot \frac{\mathrm{d}w}{\mathrm{d}x} \cdot \left[(5\cosh x - 4\sinh x - 3) \cdot \frac{\mathrm{d}w}{\mathrm{d}x} + (w\cosh w + 2\sinh w) \right]$$

We also notice that

$$\int (w \cosh w + 2 \sinh w) dw = \int w \cosh w \, dw + 2 \cosh w$$
$$= \int w \operatorname{dsinh} w + 2 \cosh w + C$$
$$= w \sinh w - \int \sinh w \, dw + 2 \cosh w + C$$
$$= w \sinh w - \cosh w + 2 \cosh w + C$$
$$= w \sinh w + \cosh w + C,$$

so consider the function

$$E(x) = \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2 + 2(w\sinh w + \cosh w),$$

and we have

$$\begin{aligned} \frac{\mathrm{d}E}{\mathrm{d}x} &= -2 \cdot \frac{\mathrm{d}w}{\mathrm{d}x} \cdot \left[(5\cosh x - 4\sinh x - 3) \cdot \frac{\mathrm{d}w}{\mathrm{d}x} + (w\cosh w + 2\sinh w) - (w\cosh w + 2\sinh w) \right] \\ &= -2 \left(\frac{\mathrm{d}w}{\mathrm{d}x} \right)^2 (5\cosh x - 4\sinh x - 3) \\ &= - \left(\frac{\mathrm{d}w}{\mathrm{d}x} \right)^2 \left[5 \left(e^x + e^{-x} \right) - 4 \left(e^x - e^{-x} \right) - 6 \right] \\ &= - \left(\frac{\mathrm{d}w}{\mathrm{d}x} \right)^2 \left(e^x + 9e^{-x} - 6 \right) \\ &= -e^{-x} \left(\frac{\mathrm{d}w}{\mathrm{d}x} \right)^2 (e^x - 3)^2 \\ &\leq 0. \end{aligned}$$

Hence,

$$E(x) \le E(0) = \left(\frac{1}{\sqrt{2}}\right)^2 + 2(0\sinh 0 + \cosh 0) = \frac{1}{2} + 2 = \frac{5}{2},$$

for $x \ge 0$. Therefore,

$$\frac{5}{2} \ge \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2 + 2(w\sinh w + \cosh w),$$

and hence

$$2(w\sinh w + \cosh w) \le \frac{5}{2}$$

for $x \geq 0$ since squares are always non-negative. Hence,

$$\cosh w \le \frac{5}{4} - w \sinh w \le \frac{5}{4}$$

for $x \ge 0$, the second inequality being true since $w \sinh w \ge 0$ since $\sinh w$ and w always take the same sign, as desired.

By the formula of the sum for a geometric series, we have

$$\sum_{r=0}^{n-1} \exp(2i(\alpha + r\pi/n)) = \exp(2i(\alpha + 0\pi/n)) \cdot \frac{1 - \exp(2i\pi/n)^n}{1 - \exp(2i\pi/n)}$$
$$= \exp(2i\alpha) \cdot \frac{1 - \exp(2i\pi)}{1 - \exp(2i\pi/n)}$$
$$= \exp(2i\alpha) \cdot \frac{1 - 1}{1 - \exp(2i\pi/n)}$$
$$= 0.$$

since the denominator is not 0.

By geometry, we have

and hence

 $s = d - r\cos\theta.$

 $r\cos\theta + s = d,$

Since $r = ks = k(d - r\cos\theta)$, we have

$$r = \frac{kd}{1 + k\cos\theta}.$$

Let L_1 be an angle α to horizontal, then L_j is angle $\alpha + (j-1)\pi/n$ angle to the horizontal for j = 1, 2, ..., n. Let $\theta_j = \alpha + (j-1)\pi/n$, and we have

$$\begin{split} l_j &= r|_{\theta=\theta_j} + r|_{\theta=\theta_j+\pi} \\ &= kd\left(\frac{1}{1+k\cos\theta_j} + \frac{1}{1+k\cos(\theta_j+\pi)}\right) \\ &= kd\left(\frac{1}{1+k\cos\theta_j} + \frac{1}{1-k\cos\theta_j}\right) \\ &= kd\cdot\frac{1+k\cos\theta_j+1-k\cos\theta_j}{1-k^2\cos^2\theta_j} \\ &= \frac{2kd}{1-k^2\cos^2\theta_j}. \end{split}$$

Hence, we have

$$\begin{split} \sum_{j=1}^{n} \frac{1}{l_j} &= \frac{1}{2kd} \sum_{j=1}^{n} (1 - k^2 \cos^2 \theta_j) \\ &= \frac{1}{2kd} \left[n - k^2 \sum_{j=1}^{n} \cos^2 \left(\alpha + (j-1)\pi/n \right) \right] \\ &= \frac{1}{2kd} \left[n - \frac{k^2}{2} \cdot \sum_{j=1}^{n} [1 + \cos 2 \left(\alpha + (j-1)\pi/n \right)] \right] \\ &= \frac{1}{2kd} \left[n - \frac{nk^2}{2} - \frac{k^2}{2} \cdot \sum_{j=1}^{n} \cos 2 \left(\alpha + (j-1)\pi/n \right) \right] \\ &= \frac{1}{2kd} \left[n - \frac{nk^2}{2} - \frac{k^2}{2} \cdot \sum_{r=0}^{n-1} \cos 2 \left(\alpha + r\pi/n \right) \right] \\ &= \frac{1}{2kd} \left[n - \frac{nk^2}{2} - \frac{k^2}{2} \cdot \sum_{r=0}^{n-1} \operatorname{Re} \exp(2i \left(\alpha + r\pi/n \right)) \right] \\ &= \frac{1}{2kd} \left[n - \frac{nk^2}{2} - \frac{k^2}{2} \cdot 0 \right] \\ &= \frac{1}{2kd} \cdot \frac{n(2-k^2)}{2} \\ &= \frac{n(2-k^2)}{4kd}, \end{split}$$

as desired.

1. Since $X_i \in \{0, 1\}$, we have $E(X_i) = 0 P(X_i = 0) + 1 P(X_i = 1) = P(X_i = 1)$.

The total number of arrangements is

$$\frac{n!}{a!b!}$$
.

To make $X_1 = 1$, we must have the first letter being A, and the rest can arrange to be whatever possible. Hence, the number of valid arrangements is

$$\frac{(n-1)!}{(a-1)!b!}.$$

Hence,

$$E(X_1) = v P(X_1 = 1) = \frac{\frac{(n-1)!}{(a-1)!b!}}{\frac{n!}{a!b!}} = \frac{a}{n}.$$

When $i \neq 1$, we must have the i - 1th letter being B and the *i*th letter being A, and the rest can arrange to be whatever possible. Since i > 1, the i - 1th letter will always exist. Hence, the number of valid arrangements is

$$\frac{(n-2)!}{(a-1)!(b-1)!}$$

Therefore,

$$E(X_i) = P(X_i = 1) = \frac{\frac{(n-2)!}{(a-1)!(b-1)!}}{\frac{n!}{a!b!}} = \frac{ab}{n(n-1)}.$$

Hence,

$$E(S) = E\left(\sum_{i=1}^{n} X_i\right)$$
$$= \sum_{i=1}^{n} E(X_i)$$
$$= \frac{a}{n} + (n-1) \cdot \frac{ab}{n(n-1)}$$
$$= \frac{a}{n} + \frac{ab}{n}$$
$$= \frac{a(b+1)}{n}.$$

2. (a) Notice that $X_1X_j \in \{0,1\}$, and $X_1X_j = 1$ if and only if $X_1 = 1$ and $X_j = 1$. Hence,

$$\mathbf{E}(X_1 X_j) = \mathbf{P}(X_1 = 1 \land X_j = 1)$$

The arrangement for the event $X_1 = 1 \wedge X_j = 1$ must have the first letter A, the j-1-th letter B, and the j-th letter A. Since $j \ge 3$, we have $j-1 \ge 2$ so will not repeat the requirement with the first letter. The rest can arrange whatever, so the number of valid arrangements is

$$\frac{(n-3)!}{(a-2)!(b-1)!}$$

٠,

and hence

$$\mathcal{E}(X_1X_j) = \mathcal{P}(X_1 = 1 \land X_j = 1) = \frac{\frac{(n-3)!}{(a-2)!(b-1)!}}{\frac{n!}{a!b!}} = \frac{a(a-1)b}{n(n-1)(n-2)}$$

as desired.

(b) All terms in this sum satisfy $2 \le i \le n-2$ and $i+2 \le j \le n$. Notice that $X_i X_j \in \{0, 1\}$, and $X_i X_j = 1$ if and only if $X_i = 1$ and $X_j = 1$. Hence,

$$\mathcal{E}(X_i X_j) = \mathcal{P}(X_i = 1 \land X_j = 1).$$

The arrangement for the event $X_i = 1 \land X_j = 1$ must have the i - 1-th letter B, i-th letter A, j - 1-th letter B and j-th letter A. Since $j \ge i + 2$, $j - 1 \ge i + 1 > i$, so the requirements do not repeat. Hence, the number of valid arrangements is

$$\frac{(n-4)!}{(a-2)!(b-2)!},$$

and hence

$$E(X_i X_j) = P(X_i = 1 \land X_j = 1) = \frac{\frac{(n-4)!}{(a-2)!(b-2)!}}{\frac{n!}{a!b!}} = \frac{a(a-1)b(b-1)}{n(n-1)(n-2)(n-3)}.$$

The number of terms in this sum is

$$\begin{split} \sum_{i=2}^{n-2} \sum_{j=i+2}^{n} 1 &= \sum_{i=2}^{n-2} (n - (i+2) + 1) \\ &= \sum_{i=2}^{n-2} (n - i - 1) \\ &= [(n-2) - 2 + 1](n-1) - \left[\frac{(n-2)(n-1)}{2} - 1\right] \\ &= (n-3)(n-1) - \left[\frac{n^2 - 3n}{2}\right] \\ &= (n-3)\left[(n-1) - \frac{n}{2}\right] \\ &= \frac{(n-3)(n-2)}{2}. \end{split}$$

Hence, this sum evaluates to

$$\frac{(n-3)(n-2)}{2} \cdot \frac{a(a-1)b(b-1)}{n(n-1)(n-2)(n-3)} = \frac{a(a-1)b(b-1)}{2n(n-1)},$$

exactly as desired.

(c) To find Var(S), we would like to find $E(S^2)$. Notice that

$$E(S^2) = E\left(\left(\sum_{i=1}^n X_i\right)^2\right)$$
$$= E\left(\sum_{i=1}^n \sum_{j=1}^n X_i X_j\right)$$
$$= \sum_{i=1}^n \sum_{j=1}^n E(X_i X_j).$$

This sum can be further split up into these parts:

• Where i = j, the sum of $E(X_i^2)$. But since X_i can only take 0 or 1, X_i^2 can only take 0 or 1, and we have

$$P(X_i = 0) = P(X_i^2 = 0), P(X_i = 1) = P(X_i^2 = 1),$$

and hence

$$\mathcal{E}(X_i^2) = \mathcal{E}(X_i).$$

Hence, the sum can be evaluated as

$$\sum_{i=1}^{n} E(X_i^2) = \sum_{i=1}^{n} E(X_i)$$

= $E(X_1) + \sum_{i=2}^{n} E(X_i)$
= $\frac{a}{n} + (n-1) \cdot \frac{a(b+1)}{n(n-1)}$.

• Where $j = i \pm 1$. We can consider the case where j = i + 1 and double the result. For $X_i X_j = 1$, we must have $X_i = 1$ and $X_j = 1$, and hence the *i*-th letter must be A, and the j - 1-th letter must be B. But this is impossible since j = i + 1, and a letter cannot be both A and B. And hence

$$2 \cdot \sum_{i=1}^{n-1} \mathcal{E}(X_i X_{i+1}) = 0.$$

• Where $j \ge i+2$ or $j \le i-2$. We consider the case where $j \ge i+2$ and double the result. This is calculated in part a for the case i = 1, and part b for the case $i \ge 2$.

Hence,

$$\begin{split} \mathbf{E}(S^2) &= \sum_{i=1}^n \sum_{j=1}^n \mathbf{E}(X_i X_j) \\ &= \frac{a}{n} + (n-1) \cdot \frac{ab}{n(n-1)} + 2 \cdot \left[(n-2) \cdot \frac{a(a-1)b}{n(n-1)(n-2)} + \frac{a(a-1)b(b-1)}{2n(n-1)} \right] \\ &= \frac{a}{n} + \frac{ab}{n} + \frac{2a(a-1)b}{n(n-1)} + \frac{a(a-1)b(b-1)}{n(n-1)} \\ &= \frac{a(b+1)}{n} + \frac{a(a-1)b(b+1)}{n(n-1)} \\ &= \frac{a(b+1)}{n} \left[1 + \frac{(a-1)b}{n-1} \right]. \end{split}$$

Hence,

$$\begin{aligned} \operatorname{Var}(S) &= \operatorname{E}(S^2) - \operatorname{E}(S)^2 \\ &= \frac{a(b+1)}{n} \left[1 + \frac{(a-1)b}{n-1} \right] - \left[\frac{a(b+1)}{n} \right]^2 \\ &= \frac{a(b+1)}{n} \left[1 + \frac{(a-1)b}{n-1} - \frac{a(b+1)}{n} \right] \\ &= \frac{a(b+1)}{n} \left[1 + \frac{(a-1)b}{n-1} - \frac{a(b+1)}{n} \right] \\ &= \frac{a(b+1)}{n} \cdot \frac{n(n-1) + n(a-1)b - (n-1)a(b+1)}{n(n-1)} \\ &= \frac{a(b+1)}{n^2(n-1)} \left(n^2 - n + abn - nb - nab - na + ab + a \right) \\ &= \frac{a(b+1)}{n^2(n-1)} \left(n^2 - n - nb - na + ab + a \right) \\ &= \frac{a(b+1)}{n^2(n-1)} \left((a+b)^2 - (a+b) - (a+b)b - (a+b)a + ab + a \right) \\ &= \frac{a(b+1)}{n^2(n-1)} \left(a^2 + 2ab + b^2 - a - b - ab - b^2 - a^2 - ab + ab + a \right) \\ &= \frac{a(b+1)}{n^2(n-1)} \left(ab - b \right) \\ &= \frac{a(b+1)}{n^2(n-1)} b(a-1) \\ &= \frac{a(a-1)b(b+1)}{n^2(n-1)}. \end{aligned}$$

1. (a) Since $0 \le X \le 1$, we must have that

$$F(x) = \int_0^x f(t) \,\mathrm{d}t$$

for $0 \le x \le 1$. Hence, since $0 \le f(t) \le M$ for $0 \le t \le x \le 1$, we have

$$0 = \int_0^x 0 \, \mathrm{d}t \le F(x) \le \int_0^x M \, \mathrm{d}t = Mx,$$

as desired.

(b) Since $0 \le X \le 1$, we must have F(0) = 0 and F(1) = 1. Let the desired integral be I, using integration by parts, we have

$$\begin{split} I &= \int_0^1 2g(x)F(x)f(x)\,\mathrm{d}x\\ &= \int_0^1 2g(x)F(x)\,\mathrm{d}F(x)\\ &= \left[2g(x)F(x)^2\right]_0^1 - 2\int_0^1 F(x)\,\mathrm{d}(g(x)F(x))\\ &= 2g(1)F(1)^2 - 2g(0)F(0)^2 - 2\int_0^1 g'(x)F(x)^2\,\mathrm{d}x - 2\int_0^1 g(x)F(x)f(x)\,\mathrm{d}x\\ &= 2g(1) - 2\int_0^1 g'(x)F(x)^2\,\mathrm{d}x - I. \end{split}$$

This means

$$2I = 2g(1) - 2\int_0^1 g'(x)F(x)^2 \,\mathrm{d}x,$$

and hence

$$I = g(1) - \int_0^1 g'(x) F(x)^2 \, \mathrm{d}x$$

2. (a) Since $0 \le Y \le 1$, we must have

$$\int_{0}^{1} kF(y)f(y) \, \mathrm{d}y = k \int_{0}^{1} F(y) \, \mathrm{d}F(y)$$

= $k \cdot \frac{1}{2} \cdot [F(y)^{2}]_{0}^{1}$
= $k \cdot \frac{1}{2} \cdot [F(1)^{2} - F(0)^{2}]$
= $\frac{k}{2} \cdot (1^{2} - 0^{2})$
= $\frac{k}{2}$
= 1,

and hence k = 2.

(b) Notice that

$$E(Y^n) = \int_0^1 2y^n F(y) f(y) \, dy$$

$$\leq \int_0^1 2y^n My f(y) \, dy$$

$$= 2M \int_0^1 y^{n+1} f(y) \, dy$$

$$= 2M E(X^{n+1})$$

$$= 2M\mu_{n+1},$$

and that

$$\begin{split} \mathrm{E}\left(Y^{n}\right) &= \int_{0}^{1} 2y^{n}F(y)f(y)\,\mathrm{d}y\\ &= y^{n}|_{y=1} - \int_{0}^{1}(y^{n})'F(y)^{2}\,\mathrm{d}y\\ &= 1 - n\int_{0}^{1}y^{n-1}F(y)^{2}\,\mathrm{d}y\\ &\geq 1 - n\int_{0}^{1}y^{n-1}MyF(y)\,\mathrm{d}y\\ &= 1 - Mn\int_{0}^{1}y^{n}F(y)\,\mathrm{d}y\\ &= 1 - \frac{Mn}{n+1}\int_{0}^{1}F(y)\,\mathrm{d}(y^{n+1})\\ &= 1 - \frac{Mn}{n+1}\left(\left[F(y)y^{n+1}\right]_{0}^{1} - \int_{0}^{1}y^{n+1}\,\mathrm{d}F(y)\right)\\ &= 1 - \frac{Mn}{n+1}\left(F(1)\cdot1^{n+1} - F(0)\cdot0^{n+1} - \int_{0}^{1}y^{n+1}f(y)\,\mathrm{d}y\right)\\ &= 1 - \frac{Mn}{n+1}\left(1 - \mathrm{E}\left(X^{n+1}\right)\right)\\ &= 1 - \frac{nM}{n+1}\mu_{n+1} - \frac{nM}{n+1}, \end{split}$$

as desired.

(c) Since we have for non-negative n,

$$1 + \frac{nM}{n+1}\mu_{n+1} - \frac{nM}{n+1} \le 2M\mu_{n+1},$$

and hence for $n \ge 1$, we have

$$1 + \frac{(n-1)M}{n}\mu_n - \frac{(n-1)M}{n} \le 2M\mu_n,$$

which multiplying both sides by n gives

$$n + (n-1)M\mu_n - (n-1)M \le 2Mn\mu_n,$$

and rearranging gives

$$n - (n-1)M \le M(n+1)\mu_n,$$

hence

$$\mu_n \ge \frac{n - (n-1)M}{M(n+1)} = \frac{n}{(n+1)M} - \frac{n-1}{n+1},$$

as desired.