STEP Project Year 2013
Year 2013
2013.3  Paper 3| . . . . . . e 78
2013.3.1  Question 1f . . . . . . ... L 79
2013.3.2  Question 2| . . . . .o e e e 82
12013.3.3  Question 3| . . . . . . e e e 84
2013.3.4  Question 4] . . . . . . oL 87
[2013.3.5  Question 5| . . . . ... 90
2013.3.6  Question 6f . . . . . . ... L 92
2013.3.7  Question 7| . . . . .. e e e e 94
2013.3.8  Question 8| . . . ..o L e e e e e 96
2013.3.12 Question 12| . . . . . . . . . e e e 98
[2013.3.13 Question 13| . . . . . . . . 101

Eason Shao

Page 77 of 430



STEP Project

Year 2013 Paper 3

2013 Paper 3

2013.3.1  Question 1| . . . . . . . L 79
2013.3.2  Question 2| . . . . . .. e e 82
2013.3.3  Question 3| . . . . . . .. e 84
2013.3.4  Question 4] . . . . .. 87
2013.3.5  Question D] . . . . .. e 90
2013.3.6  Question 6] . . . . . . . .. e e e e 92
2013.3.7  Question 7| . . . . . ... e e e 94
2013.3.8  Question 8| . . . . . . e 96
2013.3.12  Question 12| . . . . . . . L 98
2013.3.13  Question 13| . . . . . . . L Lo e 101

Eason Shao

Page 78 of 430



STEP Project Year 2013 Paper 3

2013.3 Question 1

Since t = tan %x, we have

dt 1 51 1 51 1 9
- _ —r=—(1 —x) = —(1+t*).
= 35 57 2( + tan 2x) 2( +t%)
By the tangent double-angle formula, we have
2t
tanr = ——,
1—1¢2
and hence
. 1—#2
cotx = .
2t
Therefore,
2 2 (1_t2)2_(1+t2)2
cscx=14cot“x=1+ 21)? = 21)? ,
which means ( )2
2t
-2 _
S~ r = m,
and hence
|sin x| = i
142

What remains is to consider the sign. Notice that ¢ > 0 if and only if

x ™
5€ U [pmim+3).
kEZ
which is
S U [2km, 2km + 7) ,
kEZ
but this is also precisely if and only if sinz > 0.
This means sin x must take the same sign as ¢, and hence
. 2t
sine = ——.
1+41¢2

Using this substitution, we have when x = 0,¢ = 0 and when x = %71’, t =1, and also

2dt

de = —.
. 1+1¢2

This means

1
2
/0 1+asinz
1 2dt
/ I3
0 1 + a - 1+t2
/1 2dt
o 1+ 2at+ 1+ 2at + 2
/1 th
0 t + 1 — a2)

_1—02/0 tl 1

2 t+a !
—— /1 —a?. |arctan | ———
1 —a? { <V1—a2)]0

i e (125 e )]
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But notice that

1+a a
arctan | ——— | — arctan | —— | = arctan
1—a2 1—a2

and hence

as desired.
We have

Therefore, we have

1
27 ] — 2
:/ cos xd:z:

and

b
I1+2IO:/ sin” x dx
0

™

O l=

z]

.

N =
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Also, notice that

3T g
Iy =/ =
0o 2+4+sinz

_1/’%’r da
2 0 1+%Sinx

1-1%
1 2
:§ Q-arctan -
1-(3) 1+3
1 4 ;
= — . — -arctan —
2 V3 V3
_ 2 0w
=56
o
3v3
Hence,
s
13_1—212
s
=——-2-(1-2I
1 ( 1)
s
= — —2+4I
1 + 414
™ 1
=——2+4+4( =7 — 2]
1t <2W °>
=£—2+2n—wo
_on_,_
4 3v3

Eason Shao Page 81 of 430



STEP Project Year 2013 Paper 3

2013.3 Question 2

We must have

dy d arcsinw

dzx o @ 1 — x2
- < ! -\ 1—2?—arcsinzx - (—2z) - <;) -1>

-2 \Vi—a2 Vi-a?
1 1 arcsin x
i < ”m)
1
=12 (1+zy),
which gives

d
(1—x2)£—xy—1:(1+xy)—:cy—1:0

as desired.
Differentiating both sides of this equation w.r.t. = gives

d?y 2 dy dy
— - (1— —2z-——y—xz—=0
dz? (1—a%) -2z & YT % ’
which combined gives
d?y dy
1—22). —2 _ Ly =
( ) dz? a7
If we extend the definition of the differentiation operator to
d _
dl’o - y7

then this precisely proves the desired statement for the case n = 0 since 2n + 3 = 3 and (n + 1)% = 1,
and we will prove the desired statement for all non-negative integer n. The base case is shown as above.
Now, assume the given holds for some n = k where k is a non-negative integer, i.e.

k+2 k+1 k
Y Yy 2 d'y _
we aim to show that the same holds for n = k + 1.
Differentiating both sides with respect to = gives
dk+2y 9 dk+3y k+1y k+2y 9 dk+1y
which then simplifies to
k+3 k+2 k41
2 Y Y 2 d" "y o

But notice that n+2 = (k+1)+2=k+3,n+1= (k+1)+1 =k+2, (n+1)? = (k+2)? = k? + 4k +4,
2n+3 = 2(k+ 1) + 3 = 2k + 5, so this is exactly the statement when n = k + 1, which finishes our
inductive step.

Hence, by the Principle of Mathematical Induction, we can conclude that the original statement holds
for any non-negative integer n, and hence for any positive integer n.

We have that i
arcsin0 0

oo =i T 7"
and evaluating the equation on the first derivative at x = 0 gives
dy

=1.
dz|,_,
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Evaluating the proven equation at x = 0 gives

dn+2y dny
e, D
z=0 =0
Using this, we can conclude that
d2r
Y -0
da?r |, _,

for all » > 0 where 7 is an integer, since it is 0 when n = 0, and that

d2r+1y

2r+1
dx 20

for all > 0 where 7 is an integer, by mathematical induction.
arcsin x

Hence, the MacLaurin Series for Wit must be

. oo 4y
arcsinx :Z dx 2=0 -xk
V1— 22 k!
1-2z o
d2'ry d2r+1y
> dz2r 2=0 2')" dx2r+1
— - &=y +
Z (2r)! Z 2r+1

0022T_ 1)2
:0+Z( (r!) L p2r+l

|
= 2r 4+ 1)
_ i 2% . () 22+l
(2r+1)!

= ((2r)1)? =227 (r))?

This means the general term for even powers of x is zero, and the general term for odd powers of z is

2% (r})? L p2rtl
(2r +1)!
where r is any non-negative integer.
The infinite sum can be expressed as

00 o) 27‘ 2 1 2r+1
Z 2r+1 =% Z (2r + <2) ,

r:O r=0

which is precisely double the value of

{arcsma:} arcsing  w/6

V1—a? /1 V32 33
2w

Hence, the sum evaluates to 33
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2013.3 Question 3
Since py + p2 + p3 + 44 = 0, we must have
0=0-0
=(P1+P2+P3s+44) (P1+P2+P3+44)
4 3 4
=> pi-pPi+t2), > Pi'P;
1=1 1=1 j=1i+1

Since P; are on the unit sphere, we must have p; - p; = 1. By symmetry, for all ¢ # j,

Pi - Pj

must be some real constant, say k.
Hence,
0=4-142-6-F,
which solves to
L1
=3
as desired.

1. We have

]
=
>
IIL\7
M-

: (Pi —x) - (Pi — %)

&
Il
_
s
Il

M=

(Pi-Pi —2x-p; +Xx-X)
1

.
I

4
pi-pi—2x-2—|—4-x-x
1 i=1

[
NE

.
Il

1-2x-0+4-1

M=

1
—0+4

I
© =

2. Since P1(0,0,1) and P»(a,0,b), we must have
0 a
P1 = 0 P2 = 0 3
1 b

and hence 1
p1-p2=0-a+0~0+1.b:b:_§_

We must have

po| = Va2 + 0%+ 52 = Va2 + 52 = 1,

which means
2v/2
a=—,

as desired.
The z-component of p3 and p4 must also be —%7 due to the dot product with vectp; being equal
to the z-component must also be equal to — 2

g .
Let

Il
QU O

P3

W=
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then from 2?21 pi; = 0, we have

P4 = —d
_1
3
Since p3'p2:f%,we have
2v/2 1 1 1
d e R I R
7oeroas (55)-(-5) =5
and hence
2v/2 4
N e= =
3 9’
which means
6v2c = —4,
and hence
4 V2
c=——==——.
6v/2 3
Now, since p3-p4:—%,we have
2v/2 1 1 1
_e_ 2V~ d-(—d _Z )y =_z
c<c 3>+()+(3)(3) 3
Therefore,
_@ . _\@ —d? = 4
3 3 9’
and hence
=2
37
giving
g—+Y2
V3
Hence,
V2 V21 V2 V21
PS _77:l:7a_ L4\ —T— 7=y T 5 T 5 | -
3 V33 V3 3 3
3. We have
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Let X (z,y,z). We have
4

7

(XP)' = 42 1-x-p)°

x o\ \’ x % 2
=4||l1—-1{y]-10 +11—-(y]-[ O
1
I 2/ A ? ~3
2 2
N (-2 N (-7
_ V2 _ _V2
+ |1 Y 5 + |1 Yy Yl
Z _1 z _1
3 3
2v/2 1
=41(1- )2+<1\3fx+32>

is a constant, independent of the position of X.
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2013.3 Question 4

We notice
(z — exp(if))(z — exp(—if)) = 2% — (exp(if) + exp(—if))z + 1 = 2% — 2z cosf + 1.

The 2n-th roots of —1 are z,, where r =0,1,...,2n — 1,

_ T n 2rm _ . 1427
Zr = €exp |t on om = €eXp | 17 om )

and hence
2n—1
2241 = H(z—zr)
r=0
= ”1:[1 z—exp | 1+2r 2ﬁ1 z—exp | im 1+2r
N o P 2n — P 2n
n—1

)] [T (- - o (- 222252

[
3 3
|

7 N

N

|

@

i

ko]

-~

3

—
0|+
ly

—_ ~— ~— ~—

N———
=S 3 3
Il |
[}
N

N

|

D

o]

ko)
7 N
-~
3
\
—_
[\
I
[\
=
N———
N———
| I

1. Let z = i, since n is even, 22" = i?" = (i?)" = (-1)" = 1.

Il

5
—

-
N

-~

|
)
~.

o

[\ @]
S| n
— 7 N
)
ol 3
S|
—

3
N~
—
N~

Il
—
[N}
~.
o
@]
wn
N
[N}
3

and therefore

2. Notice that in the product where n is odd, let k = ”TH, then the term of this product will be

2k — 1 1-1
22 — 2z cos (()ﬂ> +1=12%—-2zcos <M> +1
2n 2n
:22—2zcosg+1

=22 +1.
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Therefore, we have

and hence

Let z = i, we have

(2 +1)Y (=12 =22 +1

0
/N
W
(v}
|
N
)
o
o
w2
7N
)
ol 3
S
—t

r) 1) (2 - 2ecos

r=1
n;l 2 B 1
<z2 — 2z cos ( " 7T> + 1> (22 — 2z cos (
i 2n
n=1
2 2r—1
<22 — 2z cos ( " 7r> + 1) <z2 + 2z cos (
ol 2n

LHS = "(=1)"*"

2n—2r+1
1l

2(n—|—1—r)—17r>+1>

)+)

7)+1).
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and

RHS =

This gives

exactly as desired.

-1 2r —1
71') —|—1> <i2+2icos< " 71') —|—1>
2n

— 17r>)(2icos( 7r>)

2r —1
n
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2013.3 Question 5

1. Since ¢"N = p", we have p" | ¢" N, and hence p | ¢"N.
But since ged(p, ¢) = 1, we must have p | ¢" ' N. Repeating this step we will get p | N.
Let N = pNy, we have ¢"pN; = p", giving ¢"N; = p"~ . Repeating the same step will give p | Ni.

n—2

Let N; = pN,, we have q"pNy = p"~ !, giving ¢" Ny = p"~2. Repeating the same step will give

p | NQ.
We can repeat this until we reach ¢"N,,_1 = p from which we can conclude p | N,,_1.
So N, _1 = kp for some k € N.

n—1

But since Ny = pN;11, we can conclude that Ny = kp and hence

N = pNy; = kp"

as desired.

Hence, we have ¢"kp™ = p™ which gives ¢k = 1. B33gut this means ¢" and k must both be one
since ¢,k € N. Hence, ¢ = 1.

Assume, for the sake of contradiction, that ¥/ N is a rational number that is not a positive integer.

Let
Vw,
q

where p,q € N, ged(p,q) =1, and ¢ # 1 (this is to ensure it is not a positive integer).
Hence, by rearrangement, we have
q"N =p",
and from what we have proved we must have ¢ = 1, which contradicts with g # 1.
Hence, ¥/ N must either be a positive integer or must be irrational.
2. Since a®d® = b%c’, we know that a® | b®c’. By the same reasoning as part 1, we know that ¢ = ka?®
for some positive integer k.

Hence, putting it back to the original equation, we have
d” = kqb°,

which implies d® > b°.

Since a®d® = b%c®, we know that c® | a®d®. By the same reasoning as part 1, we know that a® = kyc?
for some positive integer ko.

Hence, putting it back to the original equation, we have
kod? = b®,

which implies b* > db.
This means d® = b®.
If a prime p | d, then p | d®, and hence p | b%.

Since b* = bb*~ !, if p does not divide b, this means p and b must be co-prime (since p is a prime),
then p must divide b, and repeating this argument eventually reaches p dividing b*~(¢~1) which
is a contradiction. So p must divide b.

Let d = p™d’, and we must have p not divide d’. Similarly, let b = p™b’, and we must have p does
not divide ¥'.

Putting this back to d® = b® shows

(pmd/)b _ (pnb/)a’
and hence

pmbd/b — pnab/a’

and we must have p does not divide d’® nor ¥'®.
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This means p™ and p™® are exactly the highest powers of p that divide d® = b, and hence

na
mb=na < b= —.
m

Since p" | b, we must have p" | ¢, and hence p" | na. However, since a and b are co-prime, and p
is a prime factor of b, then p must not divide a, and hence p" | n. Hence, p™ < n.

Since y* > x for y > 2 and x > 0, and p” < n, we must have p < 2 or n < 0. But since p is a
prime, p > 2, so we must have n < 0 and hence n = 0.

This means that the highest power of the prime number p that divides b is always 0, and hence

b=1.
Let
b
r=-,
q
where p,q € N, ged(p, q) = 1.
We have r
r’ = -
s

for r,s € N, ged(r, s) = 1.
We have

Here, let a = p,b = gq,¢c =r and d = s. We must have b = ¢ = 1, which contradicts with g # 1.

Therefore, r = p € N is a positive integer.
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2013.3 Question 6

@)

In the diagram, due to the triangular inequality, we must have AB < OA+ OB, and hence |z — w| <
|z| + |w| as desired.

1. We have

LHS = |z — w|?
=(z—w)(z —w)*
=(z —w)(z" —w")
=zz" +ww* — zw* — 2*w
= |2” + [w|* — (B — 2|2w])
= |2” + 2|2l |w| + |w]® — E
= (2| + |w])® - E
= RHS,

exactly as desired.
Since |z — w], |z| and |w| are all real, so must be |z — w|* and (|z| + |w|)2, and so E must be real.
Furthermore, we have

E = (|2 + [w])* - |z — wl?,

and by the inequality |z| 4+ |w| > |z — w| > 0, we can conclude
(12| + [w])* = |2 = w]?,
and hence E must be non-negative.

2. We have

LHS = |1 — zw*[?
=(1-zw")(1 - zw*)*
=(1—z2w*)(1 — z"w)
=1-z"w—2w* + zwz*w*
=1—(E -2|zw]) + zw(zw)*
=1—(E-2]zw|) + |zw|?
=1+2zw| + |zw]* - E
=(1+|2w)? - E
= RHS.

If we square both sides of the desired inequality (since both sides are non-negative this is reversible),
we have )
(2] + |wl)

(1 + [zw])*’

|z —wl’

<
11— zw*)?
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which is equivalent to showing

(l2l + w)* - E < Uzl + |w|)2.
(14 |zw))> = E ~ (14 |zw|)’
We introduce a lemma. If @ > ¢ > 0 and a > b, then
b—c b
< -,
a—c " a

The proof of this is as follows. We cross-multiply the inequality to give (since a > a — ¢ > 0 this is
reversible)
a(b—c) <bla—c),
which is equivalent to
ac > be,

and this must be true given ¢ > 0 and a > b.
Now, since |z| > 1, |w| > 1, we have

(Iz] = D(Jw| = 1) = 1+ [zw]| — |2] — w] > 0,

which means
14 Jzw| > |2| + |w|,

and since both are non-negative we have
(L + [2w])* > (2] + w])?.

Now, using this lemma, let a = (1 + [2w|)?,b = (|2| + |w|)?,c = E. a > b is as shown in above, and
¢ > 0 is shown in part 1. a > ¢since a —c = |1 — zw*|2 > 0, and the equal sign holds if and only if
|zw*| = |z2w| = 1, which must not hold if |z| > 1 and |w| > 1 since this gives |zw| = |z||w| > 1.

Therefore, we must have

2 2
(2l +[w)” =B _ (2] + |w])
1+ [zw)? = E = (1+ |2w])?’
which gives exactly what is desired.

This also holds for |z| < 1 and |w| < 1 since from this (|z| —1)(Jw|—1) > 0 still holds, so (1+|zw|)? >
(|2 + |w|)? remains true, and |zw| = |z||w| < 1 so |zw| # 1 remains true. The exact argument is still
valid.
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2013.3 Question 7
1. We notice that

dFE @ d2y 3dy

— =2 =42

dx dr daz? Y dz

dy (d% 3
—9. 4. (=<
dz (dx2 +y

= O7
and so F must be constant.
So hence
E(z) = E(0)
1
=0%4+ =
+ 2
_1
=3
Therefore,
y* =2 |E(x) - dy : <2E(zx)=1
dx ’
and hence
ly(z)] <1
2. We notice that
dFE dv d%v dv
9. .~ 1 9ginhv—
dz dr dax? +esin ydx

2
= 2% . (dv + sinhv)

dr \dz?
dv dv
—9— | g
dx ( xdac)
dv\?
= —2 B
) (dx) ’
so when x > 0, since (3—2)2 > 0, we must have

dFE
— <0.
dx —

Therefore, for z > 0, E(z) < E(0) = 0?4 2coshIln3 = 3+ § = 2. Hence,

E(z) — (d2)?
coshv(m):(x)f(dm)
10
< 3
-2
_5
=3

3. Notice that

4 (dw)®_ ) dv dh
de \dz) 7 dz dz2

d d
=-2. ﬁ . [(5coshz —4sinhz — 3) - ﬁ + (wcoshw + 2sinhw) | .
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We also notice that
/(wcoshw + 2sinhw) dw = /wcoshwdw + 2coshw
= /wdsinhw + 2coshw+C

= wsinhw — /sinhwdw—i—Qcoshw—l—C

= wsinhw — coshw + 2coshw + C
= wsinhw + coshw + C,

so consider the function

dw\ 2
E(z) = <£) + 2(wsinh w + cosh w),

and we have

dF dw
= _ _9.
dx

d
: [(5cosha: —4sinhz — 3) - ﬁ + (wcoshw + 2sinh w) — (w coshw + 2 sinh w)

T
dw\? .
= -2 <dx (5cosha — 4sinha — 3)
dw 2 T —x x —T
il [5(e"+e ™) —4(e" —e ™) —6]
2
= — (?:) (e‘"” +9e™% — 6)

=" (‘:;’)2 (e” —3)2

<0.

Hence,

2
E(z) < E(0) = ( ) +2(0sinh 0 + cosh0) = % +2= g,

1
V2
for x > 0.

Therefore,

§> dw 2-1—2( inh w + cosh w)
52 |\ 14 wsinhw + cosh w),

and hence

N | Ot

2(wsinh w + coshw) <

for > 0 since squares are always non-negative.

Hence,

(1

5
coshw < — —wsinhw < —
— 4 — 4
for x > 0, the second inequality being true since wsinhw > 0 since sinhw and w always take the
same sign, as desired.
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2013.3 Question 8

By the formula of the sum for a geometric series, we have

n—1 .
) ) 1 — exp(2im/n)™
Z exp(2i(a + rm/n)) = exp(2i(a + 07 /n)) - T exp@in/n).
r=0
) 1 — exp(2im)
exp(2ia) 1 — exp(2im/n)
(2i0) 1—-1
= eX e
PLEa) T exp(2im/n)
= 0’
since the denominator is not 0.
By geometry, we have
rcosf+s=d,

and hence
s=d—rcosf.

Since r = ks = k(d — r cos @), we have

ok
14 kcosh’

Let L; be an angle a to horizontal, then L; is angle o + (j — 1)m/n angle to the horizontal for
j=1,2,...,n. Let §; =a+ (j — 1)m/n, and we have

lj = Tlo—o, T "lo—p, 4=

= kd L + !
B 14+ kcos; 1+kcos(f; +m)

1 1
B kd(1+kcost9j + 1 kcosﬁj)
1+kcosf; +1—kcosO;

= kd 1 — k2 cos? b,

 %d
- 1 —k%cos?6;
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Hence, we have

Z = %Z(l — k% cos? 0;)
j=1 "7 j=1

1 n
= 574 n—k2Zcos2 (a+(j—1)w/n)
j=1
1 kO :
= 524 n—?-2[14—0082(0(4—(]—1)71'/71)]
j=1
Lo e .
= 5%d n—7—?-20052(a+(]—1)7r/n)
j=1
1w R ]
=— ————-ZcosZ(a+r7r/n)
ok "7 2 T2 &
L[ e &
= — n————-ZReexp(Zi(a—Frﬂ'/n))
akd "7 2 T2 &
e e
Tokd | 2 T 2
RN
 2kd 2
_ n(2—k?)
- 4kd

as desired.
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2013.3 Question 12
1. Since X; € {0,1}, we have E(X;) =0P(X; =0)+1P(X; =1) =P(X; =1).
The total number of arrangements is

n!
alb!’

To make X; = 1, we must have the first letter being A, and the rest can arrange to be whatever
possible. Hence, the number of valid arrangements is

(n—1)!
(a — 1)

Hence,
{n—D!
E(X;)=vP(X;=1)= (a—nl!)!b! _
aldb!

a

When i # 1, we must have the i — 1th letter being B and the ith letter being A, and the rest
can arrange to be whatever possible. Since i > 1, the ¢ — 1th letter will always exist. Hence, the
number of valid arrangements is

(n—2)!

(a—DIb-1)
Therefore,
(n—2)! b
(a—D)I(b—1)! a
E(X;) =P(X;=1) = =
a% n(n—1)
Hence,

&3l

G

Il

3!
7 =
i

o
N————

=) E(Xy)
=1
a ab
_ﬁ—‘_(n_l) n(n —1)
a ab
=4+ =
n n
_alb+1)
- n

2. (a) Notice that X7 X, € {0,1}, and X;X; =1 if and only if X1 =1 and X; = 1. Hence,
B(X1X;) =P(X; = 1A X, =1).

The arrangement for the event X; = 1A X; = 1 must have the first letter A, the j —1-th letter
B, and the j-th letter A. Since j > 3, we have j — 1 > 2 so will not repeat the requirement
with the first letter. The rest can arrange whatever, so the number of valid arrangements is

(n—3)!
(a —=2)!1(b—1)V
and hence
(n—3)!
(a—2)1(b—1)! a(a —1)b

EX1X,)=P(X1=1AX,=1)= = ,

( J) ( J ) ﬁ n(n—l)(n—?)
as desired.
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(b) All terms in this sum satisfy 2 <4 <n —2 and i+ 2 < j < n. Notice that X;X; € {0,1}, and
X;X; = 1if and only if X; =1 and X; = 1. Hence,

BE(X;X;) =P(X; =1AX; =1).

The arrangement for the event X; = 1 A X; = 1 must have the i — 1-th letter B, i-th letter
A, j — 1-th letter B and j-th letter A. Since j >i+2, j —1 > i+ 1 > i, so the requirements
do not repeat. Hence, the number of valid arrangements is

(n —4)!
(a—2)!1(b—2)V
and hence
E(X;X;)=P(X;=1AX;=1) = (TR __ ola—Dbb—1)
R ! J ol n(n—1)(n—2)(n—3)
The number of terms in this sum is
i 1= y (n—(i+2)+1)
i=2 j=i+2 i=2
= (n—i—1)
-2 -2+ 1n-1 - [CZROZD
n? —3n
—(n3)(n1){ 5 ]
=(n=3)|[n-1)- 7]
_(n=3)(n—2)
2
Hence, this sum evaluates to
(n=3)(n—=2)  a(la—1)b(b—1) _ ala—1)b(b—1)
2 n(n—1)(n —2)(n —3) 2n(n—1) ’

exactly as desired.
(c) To find Var(S), we would like to find E(S?). Notice that

This sum can be further split up into these parts:

e Where i = j, the sum of E(X?). But since X; can only take 0 or 1, X2 can only take 0
or 1, and we have

P(X;=0)=P(X?=0),P(X; =1)=P(X? =1),

and hence
E(X?) = B(X)).
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Hence, the sum can be evaluated as

Y EXP) =) E(X)
i=1 i=1
= E(Xl) + iE(Xv)
a ) a(b+1)

e Where j =i+ 1. We can consider the case where j = ¢ + 1 and double the result. For
X;X; =1, we must have X; = 1 and X; = 1, and hence the i-th letter must be A, and
the j — 1-th letter must be B. But this is impossible since j = i + 1, and a letter cannot
be both A and B. And hence

n—1
2- ) E(X;Xi41) =0.
i=1

e Where j > i+2or j <i—2. We consider the case where j > i+ 2 and double the result.
This is calculated in part a for the case i = 1, and part b for the case i > 2.

Hence,
E(S%) =YY B(X:X))
i=1 j=1

% ab 9y, ala —1)b ala—1)b(b—1)
_n+( 2 n(n—1)+2 {( 2) n(n —1)(n — 2) 2n(n —1)
_o, ab  2a(a—1)b  ala—1)b(b—1)
n o n n(n —1) nin—1)
_ab+1) ala—1)b(b+1)
- n n(n—1)
_a(b+1) (a—1)b
~r Dy L2

Hence,

Var(S) = E(S?) — E(S)?
a(b+1) [1+ (a—l)b] - [a(b—kl)r

n—1 n

~a(b+1) (a—1)b a(d+1)
N n {1+ n-1  n ]
_a+1) n(n—1)+n(a—1)b—(n—1)a(b+1)
o n(n —1)
*Mﬁfn abn —nb —nab—na+ab+a
7n2(n—1)( + ab b — nab +ab + a)
_ ab+l) n?—n—nb—na+ab+a
_n2(n71)( b +ab+a)
:m((a+b)2—(a+b)—(a+b)b—(a+b)a+ab+a)
7;((1—’__11))((12+2ab+b2ababb2a2ab+ab+a)
_a(b+1) b —
_n2(n71)(b b)
_a(b+1)
_n2n—1)b<&_1)
_ ala—1)b(b+1)

n?2(n—1)
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2013.3 Question 13

1. (a) Since 0 < X < 1, we must have that

F(x):/ f®)dt
0
for 0 <z < 1. Hence, since 0 < f(t) < M for 0 <t <z < 1, we have
T x
0:/ OdtgF(x)g/ Mdt = Mz,
0 0

as desired.

(b) Since 0 < X < 1, we must have F(0) = 0 and F(1) = 1. Let the desired integral be I, using
integration by parts, we have

I= / 29(x)F(2) f(z) da

_ /0 29(2)F(z) dF ()

~ [29(@)F(x)?]} — 2 / F(z) d(g(x)F())
1 1

— 2g(1)F(1)? — 29(0)F(0)? — 2 / ¢ (2)F(2)? dz — 2 / o(2)F () (z) de
0 0

=2¢(1) — 2/0 g (z)F(x)*dx — I.

This means

and hence

2. (a) Since 0 <Y <1, we must have

1 1
/ kE(y) f(y)dy = k/ F(y)dF(y)
0 0

=k- % [F(y)ﬂo

=k- % [F(1)? — F(0)%]
= g . (12 702)

_k

T2

=1

and hence k = 2.
(b) Notice that

E(Y™) = / 2" F(y)f (y) dy
01
< /O 2y" My f(y)dy

1
=2M/O y" T f(y) dy

=2ME (X")
- 2Mﬂn+1a
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and that
1
B = [ 2" F)f) dy
0
1
= y”\y:l—/o (y") F(y)? dy
1
:1,n/ y" T F(y)* dy
0
1
n—1
zl—n/ y" T MyF(y) dy
0
1
=1—Mn/ y"F(y)dy
0
Mn !
=1- F(y)d(y™*!
1 | Pwae
Mn 1 !
=1- F(y)y™*! —/ AR
p—— ([ W)y, v (v)
Mn !
=1- F1-1”+1—F0-0”+1—/ " fly)d
2 (ra) 0 i a
Mn
=1- 1-E(xm+
A (1 g (x))
_q,_nM M
- n+1:u’n+1 n+1a
as desired.
(¢) Since we have for non-negative n,
nM nM
14+ 22— < OMpipss,
+n+1u+1 1 S Hn+1

and hence for n > 1, we have

1+(n_1)M,un— (n—1)M
n n

< 2M iy,
which multiplying both sides by n gives
n+(n—1)Mu, — (n—1)M < 2Mnpu,,

and rearranging gives

n—(n—1)M < M(n+1)pmn,
hence

n—(n—-1)M n n—1

> = _
= " Mm+1) ~ DM n+l

as desired.
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