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2013.3 Question 1

Since t = tan 1
2x, we have

dt

dx
=

1

2
sec2

1

2
x =

1

2
(1 + tan2

1

2
x) =

1

2
(1 + t2).

By the tangent double-angle formula, we have

tanx =
2t

1− t2
,

and hence

cotx =
1− t2

2t
.

Therefore,

csc2 x = 1 + cot2 x = 1 +
(1− t2)2

(2t)2
=

(1 + t2)2

(2t)2
,

which means

sin2 x =
(2t)2

(1 + t2)2
,

and hence

|sinx| = 2t

1 + t2
.

What remains is to consider the sign. Notice that t ≥ 0 if and only if

x

2
∈
⋃
k∈Z

[
kπ, kπ +

π

2

)
,

which is
x ∈

⋃
k∈Z

[2kπ, 2kπ + π) ,

but this is also precisely if and only if sinx ≥ 0.
This means sinx must take the same sign as t, and hence

sinx =
2t

1 + t2
.

Using this substitution, we have when x = 0, t = 0 and when x = 1
2π, t = 1, and also

dx =
2dt

1 + t2
.

This means

I =

∫ 1
2π

0

dx

1 + a sinx

=

∫ 1

0

2 dt
1+t2

1 + a · 2t
1+t2

=

∫ 1

0

2 dt

1 + 2at+ t2

=

∫ 1

0

2 dt

(t+ a)2 + (1− a2)

=
2

1− a2

∫ 1

0

dt(
t+a√
1−a2

)2
+ 1

=
2

1− a2
·
√
1− a2 ·

[
arctan

(
t+ a√
1− a2

)]1
0

=
2√

1− a2
·
[
arctan

(
1 + a√
1− a2

)
− arctan

(
a√

1− a2

)]
.
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But notice that

arctan

(
1 + a√
1− a2

)
− arctan

(
a√

1− a2

)
= arctan

(
1+a√
1−a2

− a√
1−a2

1 + 1+a√
1−a2

· a√
1−a2

)

= arctan

(
1√

1−a2

1 + a+a2

1−a2

)

= arctan

( √
1− a2

(1− a2) + (a+ a2)

)

= arctan

(√
1− a ·

√
1 + a

1 + a

)
= arctan

(√
1− a√
1 + a

)
,

and hence

I =
2√

1− a2
arctan

(√
1− a√
1 + a

)
,

as desired.
We have

In+1 + 2In =

∫ 1
2π

0

sinn+1 x+ 2 sinn x

2 + sinx
dx

=

∫ 1
2π

0

sinn x dx.

Therefore, we have

I3 + 2I2 =

∫ 1
2π

0

sin2 x dx

=

∫ 1
2π

0

1− cos 2x

2
dx

=

[
1

2
· x− 1

4
sin 2x

] 1
2π

0

=

(
1

2
· π
2
− 1

4
sinπ

)
−
(
1

4
sin 0− 1

2
· 0
)

=
π

4
,

I2 + 2I1 =

∫ 1
2π

0

sinxdx

= [− cosx]
1
2π
0

=

(
− cos

1

2
π

)
− (− cos 0)

= (0)− (−1)

= 1,

and

I1 + 2I0 =

∫ 1
2π

0

sin0 x dx

= [x]
1
2π
0

=
1

2
π.
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Also, notice that

I0 =

∫ 1
2π

0

dx

2 + sinx

=
1

2

∫ 1
2π

0

dx

1 + 1
2 sinx

=
1

2
· 2√

1−
(
1
2

)2 · arctan

√
1− 1

2√
1 + 1

2

=
1

2
· 4√

3
· arctan 1√

3

=
2√
3
· π
6

=
π

3
√
3
.

Hence,

I3 =
π

4
− 2I2

=
π

4
− 2 · (1− 2I1)

=
π

4
− 2 + 4I1

=
π

4
− 2 + 4

(
1

2
π − 2I0

)
=

π

4
− 2 + 2π − 8I0

=
9π

4
− 2− 8π

3
√
3

=

(
9

4
− 8

3
√
3

)
π − 2.
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2013.3 Question 2

We must have

dy

dx
=

d

dx
· arcsinx√

1− x2

=
1

1− x2
·
(

1√
1− x2

·
√
1− x2 − arcsinx · (−2x) ·

(
1

2

)
· 1√

1− x2

)
=

1

1− x2
·
(
1 + x · arcsinx√

1− x2

)
=

1

1− x2
· (1 + xy) ,

which gives

(1− x2)
dy

dx
− xy − 1 = (1 + xy)− xy − 1 = 0

as desired.
Differentiating both sides of this equation w.r.t. x gives

d2y

dx2
· (1− x2)− 2x · dy

dx
− y − x

dy

dx
= 0,

which combined gives

(1− x2) · d
2y

dx2
− 3x · dy

dx
− y = 0.

If we extend the definition of the differentiation operator to

d0y

dx0
= y,

then this precisely proves the desired statement for the case n = 0 since 2n + 3 = 3 and (n + 1)2 = 1,
and we will prove the desired statement for all non-negative integer n. The base case is shown as above.

Now, assume the given holds for some n = k where k is a non-negative integer, i.e.

(1− x2) · d
k+2y

dxk+2
− (2k + 3)x · d

k+1y

dxk+1
− (k + 1)2 · d

ky

dxk
= 0,

we aim to show that the same holds for n = k + 1.
Differentiating both sides with respect to x gives

(−2x) · d
k+2y

dxk+2
+ (1− x2) · d

k+3y

dxk+3
− (2k + 3) · d

k+1y

dxk+1
− (2k + 3)x · d

k+2y

dxk+2
− (k + 1)2 · d

k+1y

dxk+1
= 0,

which then simplifies to

(1− x2) · d
k+3y

dxk+3
− (2k + 5)x · d

k+2y

dxk+2
− (k2 + 4k + 4) · d

k+1y

dxk+1
= 0.

But notice that n+2 = (k+1)+2 = k+3, n+1 = (k+1)+1 = k+2, (n+1)2 = (k+2)2 = k2+4k+4,
2n + 3 = 2(k + 1) + 3 = 2k + 5, so this is exactly the statement when n = k + 1, which finishes our
inductive step.

Hence, by the Principle of Mathematical Induction, we can conclude that the original statement holds
for any non-negative integer n, and hence for any positive integer n.

We have that

y|x=0 =
arcsin 0√
1− 02

=
0

1
= 0,

and evaluating the equation on the first derivative at x = 0 gives

dy

dx

∣∣∣∣
x=0

= 1.
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Evaluating the proven equation at x = 0 gives

dn+2y

dxn+2

∣∣∣∣
x=0

= (n+ 1)2
dny

dxn

∣∣∣∣
x=0

.

Using this, we can conclude that
d2ry

dx2r

∣∣∣∣
x=0

= 0

for all r ≥ 0 where r is an integer, since it is 0 when n = 0, and that

d2r+1y

dx2r+1

∣∣∣∣
x=0

= ((2r)!!)2 = 22r · (r!)2

for all r ≥ 0 where r is an integer, by mathematical induction.
Hence, the MacLaurin Series for arcsin x√

1−x2
, must be

arcsinx√
1− x2

=

∞∑
k=0

dky
dxk

∣∣∣
x=0

k!
· xk

=

∞∑
r=0

d2ry
dx2r

∣∣∣
x=0

(2r)!
· x2r +

∞∑
r=0

d2r+1y
dx2r+1

∣∣∣
x=0

(2r + 1)!
· x2r+1

= 0 +

∞∑
r=0

22r · (r!)2

(2r + 1)!
· x2r+1

=

∞∑
r=0

22r · (r!)2

(2r + 1)!
· x2r+1.

This means the general term for even powers of x is zero, and the general term for odd powers of x is

22r · (r!)2

(2r + 1)!
· x2r+1

where r is any non-negative integer.
The infinite sum can be expressed as

∞∑
r=0

(r!)2

(2r + 1)!
= 2 ·

∞∑
r=0

22r · (r!)2

(2r + 1)!
·
(
1

2

)2r+1

,

which is precisely double the value of[
arcsinx√
1− x2

]
x= 1

2

=
arcsin 1

2√
1−

(
1
2

)2 =
π/6√
3/2

=
π

3
√
3
,

Hence, the sum evaluates to 2π
3
√
3
.
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2013.3 Question 3

Since p1 + p2 + p3 + 44 = 0, we must have

0 = 0 · 0
= (p1 + p2 + p3 + 44) · (p1 + p2 + p3 + 44)

=

4∑
i=1

pi · pi + 2

3∑
i=1

4∑
j=i+1

pi · pj .

Since Pi are on the unit sphere, we must have pi · pi = 1. By symmetry, for all i ̸= j,

pi · pj

must be some real constant, say k.
Hence,

0 = 4 · 1 + 2 · 6 · k,

which solves to

k = −1

3
,

as desired.

1. We have

4∑
i=1

(XPi)
2 =

4∑
i=1

(pi − x) · (pi − x)

=

4∑
i=1

(pi · pi − 2x · pi + x · x)

=

4∑
i=1

pi · pi − 2x ·
4∑

i=1

+4 · x · x

=

4∑
i=1

1− 2x · 0+ 4 · 1

= 4− 0 + 4

= 8.

2. Since P1(0, 0, 1) and P2(a, 0, b), we must have

p1 =

0
0
1

 ,p2 =

a
0
b

 ,

and hence

p1 · p2 = 0 · a+ 0 · 0 + 1 · b = b = −1

3
.

We must have
|p2| =

√
a2 + 02 + b2 =

√
a2 + b2 = 1,

which means

a =
2
√
2

3
,

as desired.

The z-component of p3 and p4 must also be − 1
3 , due to the dot product with vectp1 being equal

to the z-component must also be equal to − 1
3 .

Let

p3 =

 c
d
− 1

3

 ,
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then from
∑4

i=1 pi = 0, we have

p4 =

−c− 2
√
2

3
−d
− 1

3

 .

Since p3 · p2 = − 1
3 , we have

2
√
2

3
· c+ 0 · d+

(
−1

3

)
·
(
−1

3

)
= −1

3
,

and hence
2
√
2

3
c = −4

9
,

which means
6
√
2c = −4,

and hence

c = − 4

6
√
2
= −

√
2

3
.

Now, since p3 · p4 = − 1
3 , we have

c ·

(
−c− 2

√
2

3

)
+ d · (−d) +

(
−1

3

)
·
(
−1

3

)
= −1

3
.

Therefore, (
−
√
2

3

)
·

(
−
√
2

3

)
− d2 = −4

9
,

and hence

d2 =
2

3
,

giving

d = ±
√
2√
3
.

Hence,

P3

(
−
√
2

3
,±

√
2√
3
,−1

3

)
, P4

(
−
√
2√
3
,∓

√
2

3
,−1

3

)
.

3. We have

4∑
i=1

(XPi)
4
=

4∑
i=1

[(pi − x) · (pi − x)]
2

=

4∑
i=1

(pi · pi − 2x · pi + x · x)2

=

4∑
i=1

(1 + 1− 2x · pi)
2

=

4∑
i=1

(2− 2x · pi)
2

= 4

4∑
i=1

(1− x · pi)
2
.
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Let X(x, y, z). We have

4∑
i=1

(XPi)
4
= 4

4∑
i=1

(1− x · pi)
2

= 4


1−

x
y
z

 ·

0
0
1

2

+

1−

x
y
z

 ·

 2
√
2

3
0
− 1

3

2

+

1−

x
y
z

 ·

−
√
2
3√
2√
3

− 1
3




2

+

1−

x
y
z

 ·

−
√
2
3

−
√
2√
3

− 1
3




2
= 4

(1− z)2 +

(
1− 2

√
2

3
x+

1

3
z

)2

+

(
1 +

√
2

3
x−

√
2√
3
y +

1

3
z

)2

+

(
1 +

√
2

3
x+

√
2√
3
y +

1

3
z

)2


= 4

(
4 +

4

3
x2 +

4

3
y2 +

4

3
z2
)

= 4

[
4 +

4

3

]
= 4 · 16

3

=
64

3

is a constant, independent of the position of X.
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2013.3 Question 4

We notice

(z − exp(iθ))(z − exp(−iθ)) = z2 − (exp(iθ) + exp(−iθ))z + 1 = z2 − 2z cos θ + 1.

The 2n-th roots of −1 are zr, where r = 0, 1, . . . , 2n− 1,

zr = exp

(
i

(
π

2n
+

2rπ

2n

))
= exp

(
iπ · 1 + 2r

2n

)
,

and hence

z2n + 1 =

2n−1∏
r=0

(z − zr)

=

[
n−1∏
r=0

(
z − exp

(
iπ · 1 + 2r

2n

))]
·

[
2n−1∏
r=n

(
z − exp

(
iπ · 1 + 2r

2n

))]

=

[
n−1∏
r=0

(
z − exp

(
iπ · 1 + 2r

2n

))]
·

[
n−1∏
r=0

(
z − exp

(
iπ · 1 + 2(2n− 1− r)

2n

))]

=

[
n−1∏
r=0

(
z − exp

(
iπ · 1 + 2r

2n

))]
·

[
n−1∏
r=0

(
z − exp

(
iπ · −1− 2r

2n

))]

=

n−1∏
r=0

(
z − exp

(
iπ · 1 + 2r

2n

))(
z − exp

(
iπ · −1− 2r

2n

))

=

n−1∏
r=0

(
z2 − 2z cos

(
2r + 1

2n
π

)
+ 1

)

=

n∏
r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)
.

1. Let z = i, since n is even, z2n = i2n = (i2)n = (−1)n = 1.

2 = z2n + 1

=

n∏
r=1

(
i2 − 2i cos

(
2r − 1

2n
π

)
+ 1

)

=

n∏
r=1

2i cos

(
2r − 1

2n
π

)

= (2i)n
n∏

r=1

cos

(
2r − 1

2n
π

)

= 2n(−1)
n
2

n∏
r=1

cos

(
2r − 1

2n
π

)
,

and therefore
n∏

r=1

cos

(
2r − 1

2n
π

)
= 21−n(−1)−

n
2 = 21−n(−1)

n
2 .

2. Notice that in the product where n is odd, let k = n+1
2 , then the term of this product will be

z2 − 2z cos

(
(2k − 1)π

2n

)
+ 1 = z2 − 2z cos

(
(n+ 1− 1)π

2n

)
+ 1

= z2 − 2z cos
π

2
+ 1

= z2 + 1.
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Therefore, we have

(z2 + 1)

n−1∑
r=0

(−1)rz2r = z2 + 1

=

n∏
r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)

=

n−1
2∏

r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)
(z2 + 1)

n∏
r=n+3

2

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)

=

n−1
2∏

r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)
(z2 + 1)

n−1
2∏

r=1

(
z2 − 2z cos

(
2(n+ 1− r)− 1

2n
π

)
+ 1

)
,

and hence

n−1∑
r=0

(−1)rz2r =

n−1
2∏

r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)(
z2 − 2z cos

(
2(n+ 1− r)− 1

2n
π

)
+ 1

)

=

n−1
2∏

r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)(
z2 − 2z cos

(
2n− 2r + 1

2n
π

)
+ 1

)

=

n−1
2∏

r=1

(
z2 − 2z cos

(
2r − 1

2n
π

)
+ 1

)(
z2 + 2z cos

(
2r − 1

2n
π

)
+ 1

)
.

Let z = i, we have

LHS =

n−1∑
r=0

(−1)ri2r

=

n−1∑
r=0

(−1)r(i2)r

=

n−1∑
r=0

(−1)r(−1)r

=

n−1∑
r=0

[(−1)(−1)]r

=

n−1∑
r=0

1

= n,
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and

RHS =

n−1
2∏

r=1

(
i2 − 2i cos

(
2r − 1

2n
π

)
+ 1

)(
i2 + 2i cos

(
2r − 1

2n
π

)
+ 1

)

=

n−1
2∏

r=1

(−2i cos

(
2r − 1

2n
π

)
)(2i cos

(
2r − 1

2n
π

)
)

=

n−1
2∏

r=1

4 cos2
(
2r − 1

2n
π

)

= 2n−1

n−1
2∏

r=1

cos2
(
2r − 1

2n
π

)
.

This gives
n−1
2∏

r=1

cos2
(
2r − 1

2n
π

)
= n21−n,

exactly as desired.
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2013.3 Question 5

1. Since qnN = pn, we have pn | qnN , and hence p | qnN .

But since gcd(p, q) = 1, we must have p | qn−1N . Repeating this step we will get p | N .

Let N = pN1, we have q
npN1 = pn, giving qnN1 = pn−1. Repeating the same step will give p | N1.

Let N1 = pN2, we have qnpN2 = pn−1, giving qnN2 = pn−2. Repeating the same step will give
p | N2.

We can repeat this until we reach qnNn−1 = p from which we can conclude p | Nn−1.

So Nn−1 = kp for some k ∈ N.
But since Nt = pNt+1, we can conclude that N1 = kpn−1 and hence

N = pN1 = kpn

as desired.

Hence, we have qnkpn = pn which gives qnk = 1. B33gut this means qn and k must both be one
since q, k ∈ N. Hence, q = 1.

Assume, for the sake of contradiction, that n
√
N is a rational number that is not a positive integer.

Let
n
√
N =

p

q
,

where p, q ∈ N, gcd(p, q) = 1, and q ̸= 1 (this is to ensure it is not a positive integer).

Hence, by rearrangement, we have
qnN = pn,

and from what we have proved we must have q = 1, which contradicts with q ̸= 1.

Hence, n
√
N must either be a positive integer or must be irrational.

2. Since aadb = bacb, we know that aa | bacb. By the same reasoning as part 1, we know that cb = kaa

for some positive integer k1.

Hence, putting it back to the original equation, we have

db = k1b
a,

which implies db ≥ ba.

Since aadb = bacb, we know that cb | aadb. By the same reasoning as part 1, we know that aa = k2c
b

for some positive integer k2.

Hence, putting it back to the original equation, we have

k2d
b = ba,

which implies ba ≥ db.

This means db = ba.

If a prime p | d, then p | db, and hence p | ba.
Since ba = bba−1, if p does not divide b, this means p and b must be co-prime (since p is a prime),
then p must divide ba−1, and repeating this argument eventually reaches p dividing ba−(a−1) which
is a contradiction. So p must divide b.

Let d = pmd′, and we must have p not divide d′. Similarly, let b = pnb′, and we must have p does
not divide b′.

Putting this back to db = ba shows
(pmd′)b = (pnb′)a,

and hence
pmbd′b = pnab′a,

and we must have p does not divide d′b nor b′a.
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This means pmb and pna are exactly the highest powers of p that divide db = ba, and hence

mb = na ⇐⇒ b =
na

m
.

Since pn | b, we must have pn | na
m , and hence pn | na. However, since a and b are co-prime, and p

is a prime factor of b, then p must not divide a, and hence pn | n. Hence, pn ≤ n.

Since yx > x for y ≥ 2 and x > 0, and pn ≤ n, we must have p < 2 or n ≤ 0. But since p is a
prime, p ≥ 2, so we must have n ≤ 0 and hence n = 0.

This means that the highest power of the prime number p that divides b is always 0, and hence
b = 1.

Let
r =

p

q
,

where p, q ∈ N, gcd(p, q) = 1.

We have
rr =

r

s

for r, s ∈ N, gcd(r, s) = 1.

We have (
p

q

) p
q

=
r

s(
p

q

)p

=
(r
s

)q
ppsq = qprq.

Here, let a = p, b = q, c = r and d = s. We must have b = q = 1, which contradicts with q ̸= 1.

Therefore, r = p ∈ N is a positive integer.
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2013.3 Question 6

z

w

z − w

O

A

B

In the diagram, due to the triangular inequality, we must have AB ≤ OA+OB, and hence |z − w| ≤
|z|+ |w| as desired.

1. We have

LHS = |z − w|2

= (z − w)(z − w)∗

= (z − w)(z∗ − w∗)

= zz∗ + ww∗ − zw∗ − z∗w

= |z|2 + |w|2 − (E − 2|zw|)

= |z|2 + 2|z||w|+ |w|2 − E

= (|z|+ |w|)2 − E

= RHS,

exactly as desired.

Since |z − w|, |z| and |w| are all real, so must be |z − w|2 and (|z|+ |w|)2, and so E must be real.

Furthermore, we have
E = (|z|+ |w|)2 − |z − w|2,

and by the inequality |z|+ |w| ≥ |z − w| ≥ 0, we can conclude

(|z|+ |w|)2 ≥ |z − w|2,

and hence E must be non-negative.

2. We have

LHS = |1− zw∗|2

= (1− zw∗)(1− zw∗)∗

= (1− zw∗)(1− z∗w)

= 1− z∗w − zw∗ + zwz∗w∗

= 1− (E − 2|zw|) + zw(zw)∗

= 1− (E − 2|zw|) + |zw|2

= 1 + 2|zw|+ |zw|2 − E

= (1 + |zw|)2 − E

= RHS.

If we square both sides of the desired inequality (since both sides are non-negative this is reversible),
we have

|z − w|2

|1− zw∗|2
≤ (|z|+ |w|)2

(1 + |zw|)2
,
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which is equivalent to showing
(|z|+ |w|)2 − E

(1 + |zw|)2 − E
≤ (|z|+ |w|)2

(1 + |zw|)2
.

We introduce a lemma. If a > c ≥ 0 and a > b, then

b− c

a− c
≤ b

a
.

The proof of this is as follows. We cross-multiply the inequality to give (since a ≥ a − c > 0 this is
reversible)

a(b− c) ≤ b(a− c),

which is equivalent to
ac ≥ bc,

and this must be true given c ≥ 0 and a > b.
Now, since |z| > 1, |w| > 1, we have

(|z| − 1)(|w| − 1) = 1 + |zw| − |z| − |w| > 0,

which means
1 + |zw| > |z|+ |w|,

and since both are non-negative we have

(1 + |zw|)2 > (|z|+ |w|)2.

Now, using this lemma, let a = (1 + |zw|)2, b = (|z| + |w|)2, c = E. a > b is as shown in above, and

c ≥ 0 is shown in part 1. a > c since a − c = |1− zw∗|2 ≥ 0, and the equal sign holds if and only if
|zw∗| = |zw| = 1, which must not hold if |z| > 1 and |w| > 1 since this gives |zw| = |z||w| > 1.

Therefore, we must have
(|z|+ |w|)2 − E

(1 + |zw|)2 − E
≤ (|z|+ |w|)2

(1 + |zw|)2
,

which gives exactly what is desired.
This also holds for |z| < 1 and |w| < 1 since from this (|z|−1)(|w|−1) > 0 still holds, so (1+ |zw|)2 >

(|z| + |w|)2 remains true, and |zw| = |z||w| < 1 so |zw| ̸= 1 remains true. The exact argument is still
valid.
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2013.3 Question 7

1. We notice that

dE

dx
= 2 · dy

dx
· d

2y

dx2
+ 2y3

dy

dx

= 2 · dy
dx

·
(
d2y

dx2
+ y3

)
= 0,

and so E must be constant.

So hence

E(x) = E(0)

= 02 +
1

2

=
1

2
.

Therefore,

y4 = 2

[
E(x)−

(
dy

dx

)2
]
≤ 2E(x) = 1,

and hence
|y(x)| ≤ 1.

2. We notice that

dE

dx
= 2 · dv

dx
· d

2v

dx2
+ 2 sinh v

dv

dx

= 2
dv

dx
·
(
d2v

dx2
+ sinh v

)
= 2

dv

dx
·
(
−x

dv

dx

)
= −2x

(
dv

dx

)2

,

so when x ≥ 0, since
(
dv
dx

)2 ≥ 0, we must have

dE

dx
≤ 0.

Therefore, for x ≥ 0, E(x) ≤ E(0) = 02 + 2 cosh ln 3 = 3 + 1
3 = 10

3 . Hence,

cosh v(x) =
E(x)−

(
dv
dx

)2
2

≤
10
3

2

=
5

3
.

3. Notice that

d

dx

(
dw

dx

)2

= 2 · dv
dx

· d
2v

dx2

= −2 · dw
dx

·
[
(5 coshx− 4 sinhx− 3) · dw

dx
+ (w coshw + 2 sinhw)

]
.
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We also notice that∫
(w coshw + 2 sinhw) dw =

∫
w coshw dw + 2 coshw

=

∫
w d sinhw + 2 coshw + C

= w sinhw −
∫

sinhw dw + 2 coshw + C

= w sinhw − coshw + 2 coshw + C

= w sinhw + coshw + C,

so consider the function

E(x) =

(
dw

dx

)2

+ 2(w sinhw + coshw),

and we have

dE

dx
= −2 · dw

dx
·
[
(5 coshx− 4 sinhx− 3) · dw

dx
+ (w coshw + 2 sinhw)− (w coshw + 2 sinhw)

]
= −2

(
dw

dx

)2

(5 coshx− 4 sinhx− 3)

= −
(
dw

dx

)2 [
5
(
ex + e−x

)
− 4

(
ex − e−x

)
− 6
]

= −
(
dw

dx

)2 (
ex + 9e−x − 6

)
= −e−x

(
dw

dx

)2

(ex − 3)2

≤ 0.

Hence,

E(x) ≤ E(0) =

(
1√
2

)2

+ 2(0 sinh 0 + cosh 0) =
1

2
+ 2 =

5

2
,

for x ≥ 0.

Therefore,

5

2
≥
(
dw

dx

)2

+ 2(w sinhw + coshw),

and hence

2(w sinhw + coshw) ≤ 5

2

for x ≥ 0 since squares are always non-negative.

Hence,

coshw ≤ 5

4
− w sinhw ≤ 5

4

for x ≥ 0, the second inequality being true since w sinhw ≥ 0 since sinhw and w always take the
same sign, as desired.
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2013.3 Question 8

By the formula of the sum for a geometric series, we have

n−1∑
r=0

exp(2i(α+ rπ/n)) = exp(2i(α+ 0π/n)) · 1− exp(2iπ/n)n

1− exp(2iπ/n)

= exp(2iα) · 1− exp(2iπ)

1− exp(2iπ/n)

= exp(2iα) · 1− 1

1− exp(2iπ/n)

= 0,

since the denominator is not 0.
By geometry, we have

r cos θ + s = d,

and hence
s = d− r cos θ.

Since r = ks = k(d− r cos θ), we have

r =
kd

1 + k cos θ
.

Let L1 be an angle α to horizontal, then Lj is angle α + (j − 1)π/n angle to the horizontal for
j = 1, 2, . . . , n. Let θj = α+ (j − 1)π/n, and we have

lj = r|θ=θj
+ r|θ=θj+π

= kd

(
1

1 + k cos θj
+

1

1 + k cos (θj + π)

)
= kd

(
1

1 + k cos θj
+

1

1− k cos θj

)
= kd · 1 + k cos θj + 1− k cos θj

1− k2 cos2 θj

=
2kd

1− k2 cos2 θj
.
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Hence, we have

n∑
j=1

1

lj
=

1

2kd

n∑
j=1

(1− k2 cos2 θj)

=
1

2kd

n− k2
n∑

j=1

cos2 (α+ (j − 1)π/n)


=

1

2kd

n− k2

2
·

n∑
j=1

[1 + cos 2 (α+ (j − 1)π/n)]


=

1

2kd

n− nk2

2
− k2

2
·

n∑
j=1

cos 2 (α+ (j − 1)π/n)


=

1

2kd

[
n− nk2

2
− k2

2
·
n−1∑
r=0

cos 2 (α+ rπ/n)

]

=
1

2kd

[
n− nk2

2
− k2

2
·
n−1∑
r=0

Re exp(2i (α+ rπ/n))

]

=
1

2kd

[
n− nk2

2
− k2

2
· 0
]

=
1

2kd
· n(2− k2)

2

=
n(2− k2)

4kd
,

as desired.
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2013.3 Question 12

1. Since Xi ∈ {0, 1}, we have E(Xi) = 0P(Xi = 0) + 1P(Xi = 1) = P(Xi = 1).

The total number of arrangements is
n!

a!b!
.

To make X1 = 1, we must have the first letter being A, and the rest can arrange to be whatever
possible. Hence, the number of valid arrangements is

(n− 1)!

(a− 1)!b!
.

Hence,

E(X1) = vP(X1 = 1) =

(n−1)!
(a−1)!b!

n!
a!b!

=
a

n
.

When i ̸= 1, we must have the i − 1th letter being B and the ith letter being A, and the rest
can arrange to be whatever possible. Since i > 1, the i − 1th letter will always exist. Hence, the
number of valid arrangements is

(n− 2)!

(a− 1)!(b− 1)!

Therefore,

E(Xi) = P(Xi = 1) =

(n−2)!
(a−1)!(b−1)!

n!
a!b!

=
ab

n(n− 1)
.

Hence,

E(S) = E

(
n∑

i=1

Xi

)

=

n∑
i=1

E(Xi)

=
a

n
+ (n− 1) · ab

n(n− 1)

=
a

n
+

ab

n

=
a(b+ 1)

n
.

2. (a) Notice that X1Xj ∈ {0, 1}, and X1Xj = 1 if and only if X1 = 1 and Xj = 1. Hence,

E(X1Xj) = P(X1 = 1 ∧Xj = 1).

The arrangement for the event X1 = 1∧Xj = 1 must have the first letter A, the j−1-th letter
B, and the j-th letter A. Since j ≥ 3, we have j − 1 ≥ 2 so will not repeat the requirement
with the first letter. The rest can arrange whatever, so the number of valid arrangements is

(n− 3)!

(a− 2)!(b− 1)!
,

and hence

E(X1Xj) = P(X1 = 1 ∧Xj = 1) =

(n−3)!
(a−2)!(b−1)!

n!
a!b!

=
a(a− 1)b

n(n− 1)(n− 2)
,

as desired.
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(b) All terms in this sum satisfy 2 ≤ i ≤ n− 2 and i+2 ≤ j ≤ n. Notice that XiXj ∈ {0, 1}, and
XiXj = 1 if and only if Xi = 1 and Xj = 1. Hence,

E(XiXj) = P(Xi = 1 ∧Xj = 1).

The arrangement for the event Xi = 1 ∧Xj = 1 must have the i − 1-th letter B, i-th letter
A, j − 1-th letter B and j-th letter A. Since j ≥ i+ 2, j − 1 ≥ i+ 1 > i, so the requirements
do not repeat. Hence, the number of valid arrangements is

(n− 4)!

(a− 2)!(b− 2)!
,

and hence

E(XiXj) = P(Xi = 1 ∧Xj = 1) =

(n−4)!
(a−2)!(b−2)!

n!
a!b!

=
a(a− 1)b(b− 1)

n(n− 1)(n− 2)(n− 3)
.

The number of terms in this sum is

n−2∑
i=2

n∑
j=i+2

1 =

n−2∑
i=2

(n− (i+ 2) + 1)

=

n−2∑
i=2

(n− i− 1)

= [(n− 2)− 2 + 1](n− 1)−
[
(n− 2)(n− 1)

2
− 1

]
= (n− 3)(n− 1)−

[
n2 − 3n

2

]
= (n− 3)

[
(n− 1)− n

2

]
=

(n− 3)(n− 2)

2
.

Hence, this sum evaluates to

(n− 3)(n− 2)

2
· a(a− 1)b(b− 1)

n(n− 1)(n− 2)(n− 3)
=

a(a− 1)b(b− 1)

2n(n− 1)
,

exactly as desired.

(c) To find Var(S), we would like to find E(S2). Notice that

E(S2) = E

( n∑
i=1

Xi

)2


= E

 n∑
i=1

n∑
j=1

XiXj


=

n∑
i=1

n∑
j=1

E(XiXj).

This sum can be further split up into these parts:

• Where i = j, the sum of E(X2
i ). But since Xi can only take 0 or 1, X2

i can only take 0
or 1, and we have

P(Xi = 0) = P(X2
i = 0),P(Xi = 1) = P(X2

i = 1),

and hence
E(X2

i ) = E(Xi).

Eason Shao Page 99 of 430



STEP Project Year 2013 Paper 3

Hence, the sum can be evaluated as
n∑

i=1

E(X2
i ) =

n∑
i=1

E(Xi)

= E(X1) +

n∑
i=2

E(Xi)

=
a

n
+ (n− 1) · a(b+ 1)

n(n− 1)
.

• Where j = i ± 1. We can consider the case where j = i + 1 and double the result. For
XiXj = 1, we must have Xi = 1 and Xj = 1, and hence the i-th letter must be A, and
the j − 1-th letter must be B. But this is impossible since j = i+ 1, and a letter cannot
be both A and B. And hence

2 ·
n−1∑
i=1

E(XiXi+1) = 0.

• Where j ≥ i+2 or j ≤ i− 2. We consider the case where j ≥ i+2 and double the result.
This is calculated in part a for the case i = 1, and part b for the case i ≥ 2.

Hence,

E(S2) =

n∑
i=1

n∑
j=1

E(XiXj)

=
a

n
+ (n− 1) · ab

n(n− 1)
+ 2 ·

[
(n− 2) · a(a− 1)b

n(n− 1)(n− 2)
+

a(a− 1)b(b− 1)

2n(n− 1)

]
=

a

n
+

ab

n
+

2a(a− 1)b

n(n− 1)
+

a(a− 1)b(b− 1)

n(n− 1)

=
a(b+ 1)

n
+

a(a− 1)b(b+ 1)

n(n− 1)

=
a(b+ 1)

n

[
1 +

(a− 1)b

n− 1

]
.

Hence,

Var(S) = E(S2)− E(S)2

=
a(b+ 1)

n

[
1 +

(a− 1)b

n− 1

]
−
[
a(b+ 1)

n

]2
=

a(b+ 1)

n

[
1 +

(a− 1)b

n− 1
− a(b+ 1)

n

]
=

a(b+ 1)

n
· n(n− 1) + n(a− 1)b− (n− 1)a(b+ 1)

n(n− 1)

=
a(b+ 1)

n2(n− 1)

(
n2 − n+ abn− nb− nab− na+ ab+ a

)
=

a(b+ 1)

n2(n− 1)

(
n2 − n− nb− na+ ab+ a

)
=

a(b+ 1)

n2(n− 1)

(
(a+ b)2 − (a+ b)− (a+ b)b− (a+ b)a+ ab+ a

)
=

a(b+ 1)

n2(n− 1)

(
a2 + 2ab+ b2 − a− b− ab− b2 − a2 − ab+ ab+ a

)
=

a(b+ 1)

n2(n− 1)
(ab− b)

=
a(b+ 1)

n2(n− 1)
b(a− 1)

=
a(a− 1)b(b+ 1)

n2(n− 1)
.
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2013.3 Question 13

1. (a) Since 0 ≤ X ≤ 1, we must have that

F (x) =

∫ x

0

f(t) dt

for 0 ≤ x ≤ 1. Hence, since 0 ≤ f(t) ≤ M for 0 ≤ t ≤ x ≤ 1, we have

0 =

∫ x

0

0 dt ≤ F (x) ≤
∫ x

0

M dt = Mx,

as desired.

(b) Since 0 ≤ X ≤ 1, we must have F (0) = 0 and F (1) = 1. Let the desired integral be I, using
integration by parts, we have

I =

∫ 1

0

2g(x)F (x)f(x) dx

=

∫ 1

0

2g(x)F (x) dF (x)

=
[
2g(x)F (x)2

]1
0
− 2

∫ 1

0

F (x) d(g(x)F (x))

= 2g(1)F (1)2 − 2g(0)F (0)2 − 2

∫ 1

0

g′(x)F (x)2 dx− 2

∫ 1

0

g(x)F (x)f(x) dx

= 2g(1)− 2

∫ 1

0

g′(x)F (x)2 dx− I.

This means

2I = 2g(1)− 2

∫ 1

0

g′(x)F (x)2 dx,

and hence

I = g(1)−
∫ 1

0

g′(x)F (x)2 dx.

2. (a) Since 0 ≤ Y ≤ 1, we must have∫ 1

0

kF (y)f(y) dy = k

∫ 1

0

F (y) dF (y)

= k · 1
2
·
[
F (y)2

]1
0

= k · 1
2
·
[
F (1)2 − F (0)2

]
=

k

2
· (12 − 02)

=
k

2
= 1,

and hence k = 2.

(b) Notice that

E (Y n) =

∫ 1

0

2ynF (y)f(y) dy

≤
∫ 1

0

2ynMyf(y) dy

= 2M

∫ 1

0

yn+1f(y) dy

= 2M E
(
Xn+1

)
= 2Mµn+1,
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and that

E (Y n) =

∫ 1

0

2ynF (y)f(y) dy

= yn|y=1 −
∫ 1

0

(yn)′F (y)2 dy

= 1− n

∫ 1

0

yn−1F (y)2 dy

≥ 1− n

∫ 1

0

yn−1MyF (y) dy

= 1−Mn

∫ 1

0

ynF (y) dy

= 1− Mn

n+ 1

∫ 1

0

F (y) d(yn+1)

= 1− Mn

n+ 1

([
F (y)yn+1

]1
0
−
∫ 1

0

yn+1 dF (y)

)
= 1− Mn

n+ 1

(
F (1) · 1n+1 − F (0) · 0n+1 −

∫ 1

0

yn+1f(y) dy

)
= 1− Mn

n+ 1

(
1− E

(
Xn+1

))
= 1− nM

n+ 1
µn+1 −

nM

n+ 1
,

as desired.

(c) Since we have for non-negative n,

1 +
nM

n+ 1
µn+1 −

nM

n+ 1
≤ 2Mµn+1,

and hence for n ≥ 1, we have

1 +
(n− 1)M

n
µn − (n− 1)M

n
≤ 2Mµn,

which multiplying both sides by n gives

n+ (n− 1)Mµn − (n− 1)M ≤ 2Mnµn,

and rearranging gives
n− (n− 1)M ≤ M(n+ 1)µn,

hence

µn ≥ n− (n− 1)M

M(n+ 1)
=

n

(n+ 1)M
− n− 1

n+ 1
,

as desired.
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