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2012.3 Question 1

We have
2
Qe dy (AL dy
dz dz dz dz dz?
_,dy dy\? d%y
— 129 —d Ny —2
Vo [n (dx) T
as desired.

2
1. Let n =1, we havezzy(%> , and

de _ dy
dz ~ dx

dy 2 d2y
— 2y—=| .
(dx) * Yaaz

dy 2 d2y
(m) W = VY

Hence, the differential equation

simplifies to

dz

d

dy = VY

dzx
and hence q

z

ay VY-

Hence, by integration,
2 2 4+C
z==
3y

and therefore C = —%.

We therefore have

and hence

Rearrangement gives

d 2
Y —1
Notice that
dyfyr—1 1 1 3
S 2y
dy 2 y%—l 2
3 VY
R s

Eason Shao Page 54 of 430



STEP Project Year 2012 Paper 3

and hence by integration

4 2
3-\/y3—1:\/;c+0.

When =0,y = 1, and hence C' = 0. Therefore,

3
3
7—1: —_

and hence
y? = gaﬁZ +1,
and hence )
(1)
3 )
as desired.

2
2. Let n = —2, we have z = y 2 (dfy) , and

dzx
dz sdy Ayt &y
de dz | \dz dx?
Hence, the differential equation
dy 2 dy 2 _
(6) —vi+i-
simplifies to
dz
dz 2 _
EEWET y" =0,
which gives
ds _ 2
dy y

By integration on both sides, we have
z=2lny+ C,

and when z =0,y =1 dy _ 0, which gives z = 0. Hence, C = 0, and

' dx
dy 2
22} =21
Yy (dx) ny,

d
dfy =yv2ny,
i

which gives

and therefore,

dy V2
=v2dzx.
yvIny

By integration,

dy dlny
= =24/1 C,
_/ yyv/Iny Viny ny+

2/Iny = V2z + C.
When x =0, y =1, so C = 0, and hence

and hence

xr
1/1 = —_—
Y \/§7

and therefore, the solution to the original differential equation is

2
y=-ez.
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2012.3 Question 2

1. By the formula for difference of two squares, we have

1-—2)1+2)14+22)Q+zY - QA+2?) =1 -1 +2°) 1 +2Y) - 1 +2)
=1-zHA +aY) -1 +2*)

This means,
gn+1

1=01-2)Q+2)Q+22)A+2h) -1 +22)+22,
and dividing both sides by 1 — x gives
1 2

= A+ +a?) L +at) o (L) + T

Rearranging and taking natural logs on both sides, we have
In(1 — gcznﬂ) —In(l —x) = Zln(l + :Czk),
k=0

and therefore,

n+1

ln(l—x):—Zn:ln(1+x2k)+ln(1—x2 ).
k=0

2n+1

Let n — 0o. 2"*! — 0o, and since |z| < 1, we have — 0, and hence

In(1 —x) Zlnl—l—x )+ 1n(1 Zlnl—i—m ,

as desired.

Differentiating both sides with respect to x, we have

ok . 2k_1

:_Z 1+ 22"

and hence

exactly as desired.

2. Notice that

n—1

A+z+22) 1 —z+2H)1 -2 +2HQ -2t +25) - (122" +22)
= (1+22)2 =21 -22+aH (1 —a* +28) - (1 — 22" +22")

= (1422 +2) 1 -2 +aH (1 -2t +28) - (1— 22" +22)

= (142" - @))A—-2*+2% - 1-22" +2%)
(

T+at +a8)1—a*+28) - (1—22" +2%)

2n 2n+1
+x .

=14z

Therefore,

ontl

l=Q+z+2>)Q—-z+a)A—2? 42—zt +2%) - (1 -2 +22") -2 -2,
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and hence
1 n—1 n 2" + x2n+1
- - 2y(] _ 22 41 _ g 8Y... (1 — z2 omy _ P T
Tp—— ( x4+ x7)( z°+2%)( xt+ %) ( T +ax*) Tp——
Rearranging and taking natural logs on both sides, we have
n k k
n n+1 L —1
In(1 + 22 —|—:v2+)—ln(1+x+x2):Zln(1—z2 + 2,
k=1
and hence .
In(l+z+2°%) = - Zln(l " ka) +In(1+ 22" + x2n+1).
k=1
Let n — oo, we have 2", 2"*! — oo, and since |z| < 1, we must have x2",x2n+1 — o0, and hence
In(1 + 22" +22""") = 0. Hence,
In(1 + z + 2%) Zlnl—x _1+x2k).
Differentiating both sides with respect to x, we get
1422 B 272k12k11+2k 2’“1 i 2’€11 2%2"‘71
1+z422 2 4 g2k 1— 227" 4 22" ’

k=1

which is exactly what is desired.
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2012.3 Question 3

1. Let the two curves be 'y :y =4 — 22 and 'y : ¢ = —% + %
For the first curve, its y-intercept is 4, and its z-intercept is £2.
For the second curve, its y-intercept is vk (if & > 0), and its z-intercept is %
(a) Since k < 0, we must have % < 0 as well, and hence the curves must look as follows:

Y

Sl

(b) Since 0 < k < 16, I's must have a y-intercept less than that of T'y. Since % < 2, I'; must have
the z-intercept to the left of (2,0). Hence, the curves must look as follows:
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<

3=

(¢) Since k > 16, I'y must have a y-intercept greater than that of I';. Since % > 2, I's must have
the z-intercept to the right of (2,0). Hence, the curves must look as follows:
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3=

(d) Since k > 16, I'y must have a y-intercept greater than that of I'y. Since % < 2, I's must have
the z-intercept to the left of (2,0). Hence, the curves must look as follows:
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3=

2. Since y = y, we must have

120 =k — (4 —2%)? =k — 16 + 82 — z*,

and hence
2t — 822+ 122 +16 — k =0,
as desired.
For the first curve, we have
dy
= _ 9
dx o
and applying implicit differentiation on both sides of the second equation, we must have
dy
12 = —2y—
Y dz’

and hence
12 = (—2y) - (—22),

which gives zy = 3 for the point where the curves touch.

Hence,

3
S=4-ad?
a

and this gives
a®—4a+3=0
as desired.

Notice that ‘
a®—4a+3=(a—1)(a*+a—3),

Eason Shao Page 61 of 430



STEP Project Year 2012 Paper 3

and hence the three solutions to a are

-1+v1+12 -1+£+13
2 o 2 '

ay =1,a23 =

From the first equation, we must have

k=a*—8a® +12a + 16
=a(a® — 4a + 3) — 4a® + 9a + 16
=a-0—4a>+9a+ 16
= —4a® + 9a + 16,

as desired.
Fora=1,k=-4-124+9-14+16=—-4+9+16 =21, and%:%<2, so (d) arises.

When as 3 = *1i2‘/ﬁ, we have a? +a — 3 = 0, and hence

k=—4a®>+9a+16 = —4(a*+a—3) + 13a+ 4 = 13a + 4.

—1++v13
2

For as = , we have

~13 4+ 131 54131
L 13+ 3¢§+4: 5+ 3\/*3'

2 2
Since 13v/13 > 13- 3 = 39, we must have —5 + 13v/13 > 34, and hence k > % =17 > 16.
We also have 13v/13 < 13-4 = 52, and hence —5 + 13v/13 < 47, and hence k < 4—27, which means

ko AT 47

=_—<
m 2-12 24 ’
so case (d) arises.

For a3 = A_T V13 ' we have k = _13_21?” 134+ 4= _5_5“ 13 <0, and so (a) arises.
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2012.3 Question 4
1. Using the Maclaurin Expansion of e” and setting x = 1, we have

o0 n o0 1

Hence,

We have as well

| |
= n! ot n!
o0 oo o0
nn—1 n 1
= ( | D13 Dot
n! n
n=1 n=1 n=1

n=2 n=1
=1
=5y = -1
n!
n=0
=%e—1,

as desired.
We also have

o0

T;Qn—l nzl
-3

8n% —12n% +6n — 1
n!

-2)+12n(n—-1)+2n-1
n!

+12Z

:(8+12+2*1)Zﬁ+1

n—l

(oo}

:SZ

n:3

+2Z T

=2le+ 1.

2. Using the Maclaurin Expansion of In(1 — z) and letting z = %,

w1 )W g

n=1 n=1

we have

[ee]

1
ZH—FI
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Hence,

o0

[(n+1D)(n+2)—5n+1)+2(n+2)]2"
(n+1)(n+2)

(]

i n?+1)27"
n=0 (n+1)(n+2) o

8

oo oo 2—71
:n:O _5nzon+2 Zom

> 9-n X 9—n
:2_5'4ZT+2'2217
n=2 n=

1
=2-20(ln2 - ) +4(In2)

=—16In2 4 12.
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2012.3 Question 5

1. (a) An integer point: (0,1). A non-integer point: (g, %)
(b) An integer rational point: (1,1). Notice that

(cos@ + v/msin6)? + (sin @ — \/mcosf)?
= cos? 0 + 2v/msin 0 cos 6 + msin® 0 + sin? 6 — 2/m sin 0 cos 6 + m cos? 0
= (m 4+ 1)(sin” 6 4 cos? )
=m+ 1.

Consider letting x = cosf + /msinf, and y = sinf — /mcosf. Let m = 1, and we have
x =cosf +sinf and y =sinf — cosf, with 22 +y2 =m +1 = 2.
Let cosf = %, and sinf = %. We have
71
($7y) - (575)

is a non-integer rational point.

2. (a) An integer 2-rational point: (1,v/2).
For the non-integer 2-rational point, let m = /2 in the previous question, and we have

(cosf + V2sin6)* 4 (sinfh — V2cosh)? =2+ 1 =3.

Now, let cos ) = % and sinf = %. Let z = cos0++/2sinf = %-ﬁ-\/i-% andy = sinf—+/2 cos f =
% —2. % We must have z2 —|—y2 = 3, and

(w,y):<§+\/§~§,:_\/§.§>

is a non-integer 2-rational point on z? + y? = 3.
(b) Consider z = acosf + by/msinf and y = asinf — by/m cos 0, we have

2’ +y* = (acosf + bﬂsmef + (asing — b\/ﬁcosﬁ)2
= a? cos? 0 + b>msin? 0 + 2aby/m sin 6 cos 0
+ a?sin® 0 + b*>m cos® 0 — 2aby/msin O cos 0
= (a® + b*m) cos® 0 + (a® + b*m) sin? §
= (a® 4 b®m)(sin” 6 4 cos? A)

=a’® +b’m.

We set m = 2, and hence we would like a? 4+ 2b®> = 11. Consider @ = 3 and b = 1, and set

cost%and sinﬁz%. Hence,
4 3 12 3
xzacos@—l—b\/ﬁsinG:S-5—1—1-\/@3:?—&—\/5-5,
and 3 49 4
y:asin9—b\/ﬁ0089:3~g—1-\/§-5:6—\/5-5,

and we must have 22 4+ y? = 32 + 12 . 2 = 11. Therefore,
12 39 4

B 2.2 2 _9.=2

(z,y) (5 +V2 55 V2 )

is a non-integer 2-rational point on the circle 22 + y? = 11.
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(c) Consider x = asec + by/mtan and y = atanf + by/msec @, we have

x® —y* = (asech + b\/ﬁtan@)2 — (atanf + b\/TWsecH)2
= a?sec? 0 + b>mtan® 0 + 2aby/msec 0 tan 0
—a?tan? 0 — b>msec? 6 — 2aby/m sec O tan 6
= a®(sec? 6 — tan? 0) — b*m(sec? § — tan? 0)
=a% - b’m.

We set m = 2, and hence we would like a? — 2b> = 7. Consider ¢ = 3 and b = 1, and set

tanf = % and secl = %. Hence,

5 3 15 3
mzasec@—i—b\/ﬁtanez&z—&—l-\[-1:——1—\/51,

and
3 5 9 5
y:atanﬁ—kb\/msecG:S-Z—Fl-\/iz:14—\[2-1,

and we must have 22 — y? = 32 — 12. 2 = 7. Therefore,
15 39 5
= —_— 2 P— p— PR
(z,y) (44—\[ 4,4-1-\[ 4)

is a non-integer 2-rational point on the hyperbola =2 — 32 = 7.
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2012.3 Question 6

Since = + iy is a root of this quadratic equation, putting it back into the original equation, we have
(z +iy)® + p(z +iy) +1 = (¢® —y* +pr + 1) + (22 + p)yi =0,

and so it must have both real parts and complex parts 0, and hence x2 —y*+pr+1 = 0, and (2z+p)y = 0.
Since (2z + p)y = 0, we must have either 2z + p = 0 (which gives p = —2x), or y = 0. In the latter
case, we put this back into the first equation, and we have

> +pr+1=0.

If x = 0, then we must have 0+0+1 = 1 = 0 which is impossible. Hence, x # 0, and by rearranging,

we have
241

x
In the case where p = —2x, we must have

22—y (—22) 2 +1=0 < 22 +¢* =1,

and this represents a circle centred at the origin with radius 1.

In the case where p = —”:2;1, we must have y = 0, and « # 0. This represents the real axis without
the origin.

This is the root locus of this equation.

N
(o

For the second equation, let z = x + iy be a solution. We have
plx+iy)? + (x +iy) + 1 = (pr? — py® + 2 + 1) + (2pz + 1)yi = 0,

and so pr? —py? +z+1=0and (2pz + 1)y = 0.
Since (2px + 1)y = 0, we must have either 2pz +1 = 0 (which gives p = 72% since x # 0, or otherwise
04+1=1=0), or y=0. In the latter case, we put this back to the first equation, and we have

prl+x+1=0.

If z = 0 then we must have 0+ 0+ 1 = 1 = 0 which is impossible. Hence, x # 0, and by rearranging,
we have

z+1
=T
In the case where p = —ﬁ7 given x # 0,
—i( 2oy +24+1=0 < £+y—2+1:0 = (r+1)2+y2 =1
2x 2 2 '

This represents a circle centred at (—1,0) with radius 1, and since = # 0, we have to remove the
point (0, 0).

In the case where p = —Iltl, y = 0 and this represents the real axis without the origin.

This is the root locus of this equation.
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For the final equation, let z = x + iy be a solution. We have
pla +iy)* +p?(z +iy) +2 = (p2® — py® +p°x +2) + yp(2a + p)i = 0,

and so pz? — py? + p*x +2 =0 and yp(2x + p) = 0.

Notice that here, p # 0, since if p = 0 then 2 = 0 and there is no solution. So since yp(2z + p) = 0,
we have 2x + p = 0 which gives p = —2z, or y = 0. In the latter case, we put this back to the first
equation, and we have

pr’ +pPr+2=0.

If x = 0 then we must have 0 + 0 4+ 2 = 2 = 0 which is impossible. Hence, x # 0. For this to have a
real solution for p, we must have x # 0 and

(3?2 —4-2-2>0,
which means
z(r —2)(2* + 22 +2) > 0.

Since 22 +2r +2 = (x +1)2+1 > 1 > 0, we must have x(x —2) > 0, and x < 0 or z > 2. This
represents the real line with the interval [0,2) removed.
In the case where p = —2x, putting this back to the first equation, we have

] 1 3
(—2z)2% — (—22)y° 4+ (—22)*24+2=0 <= 2° + 2y +1=0 <= > = — ks .
x

This is the root locus of this equation.
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2012.3 Question 7
Since y = —2(y — z), differentiating both sides with respect to ¢ gives

=29+ 23
= —2) +2(—y — 32)
= 45— 62
= —4y — 3(y + 2y)
= —Tj — by,

and hence
4§+ 7y + 6y = 0.

The auxiliary equation
M +TA+6=0

gives roots
)\1 = _laAQ = _6a

and hence
y= Ae ' + Be 6.

Hence,
y=—Ae ' —6Be %,

and therefore,

Lo Uty
2
_ (—Ae™t —6Be %) 4 2(Ae~" + Be~ )
B 2
_ Ae~t — 4Be~ 6t
B 2

1
= —Ae ' —2Be %,
2
This set of general solution
1
,2) = Ae t + Be % —Ae ' —2Be 0,
Y 2

is exactly what is desired.
1. y(0) =5 and z(0) = 0 gives the system of linear equations
A+ B=5,

1
-A—-2B=0.
5 0

This solves to (4, B) = (4,1). Hence,

21(t) = 27t — 2761,

2. z(0) = z(1) = c gives the system of linear equations

1
gA—2B=g¢ A—4B =2,
iA—zB:c, e5A — 4B = 2¢%¢.
2e e
Hence,
. 2c(e® — 1),
ed—1

Eason Shao Page 69 of 430



STEP Project

Year 2012 Paper 3

and therefore

This gives

3. Notice that

Hence, ¢ must be such that

Both solves to precisely

and hence

for this value of c.

A—2c
B =
4
6_
B 262:_11) — 2
B 4
e (5—1)— (8 —1)
2 e®—1
_ce’le—1)
2(ef 1)
c(e®—1) _, cePle—1) _g
() = -1 ¢ o1
0
Z z1(t —n)
0
— Z [2e—t+n _ 26—6t+6n]
700

I
[\)
| —— |
e
L
3
I M8
o
@
3
|
m\
[}
2
3
I M8
(e}
m\
D
3
| I

c(eb —1) 2e

eb—1 e—1’
2¢5 cePe—1)
eS—1 -1
o 2e(e” —1)
NGRS
0
)= Y u(t—n)

n=—oo
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2012.3 Question 8

1. We aim to show that for all n > 0,
FnFn+3 - Fn+1Fn+2 = Fn+2Fn+5 - Fn+3Fn+4-
Notice that

RHS = Fyi2Fnys — FagsFoya
= Foio(Fugs + Foya) = Fuyz(Foyz + Fogs)
= FnyoFnia — FoysFoys
- n+2(Fn+2 +Fn+3) _Fn+3(Fn+1 +Fn+2)
= ForoFni2 — FrysFup
= n+2(Fn+3 _Fn+1) _Fn+3(FvL+2 - Fn)
=FoFni3 — Fnp1Fni2
= LHS

and set n = 0 shows exactly what is desired.

2. By the lemma in the previous part, the problem reduces to two cases are when n is odd and when
n is even.

e When n is even,
FoFhis—Foi1Fhyo=FFs—FiF,=0-2—-1-1=-1.
e When n is odd,
FoFpis—Foi1Fhyo=FF, —FF;=1-3—-1-2=1.
3. Using the tangent formula for sum of angles, we have

1 1
1 1 +
arctan ( ) + arctan ( ) = arctan M
F27"+1 F27"+2 1-— .

Forp1  Forgo

2r+1 + Forgo >

= arctan
For1Fory0 —1

= arctan

Fyq3 >
Fori1Forio + (ForFoptrs — Fopp1Fopia)

(A

(
:arctan( Fores )

(

as desired.

Hence, we have

1 1 1
arctan = arctan — arctan ,
(F2r+1) (F2r> (F2r+2>
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and therefore

I
&
=
o
=+
Q
B

r=1

¢ 1
arctan (| —
F

1
= arctan <F2)

= arctan (1)
m

1
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2012.3 Question 12

1. Let [S] denote the area (2-D case) or the volume (3-D case) of S.
Let | = AB = BC = C'A, and hence we have

-1 1

AABC) = — = —.
[ Cl=— =3
By trigonometry, we also have
PsinT /3
AABC] = ——3 = ==
AdBC) = 18 = Y,
and hence
4 2 V3

On the other hand, splitting up the triangle, we have

[AABC] = [AABP] + [ABCP] + [AACP]
AB'I’l +BC’QZ‘24>‘ACVI’3
2 2 2

l
:§(I’1+I2+$3).

Since [AABC| = [AABC], we must have z1 + 22 + x3 = 1.

Let the angle bisectors of ZBAC, ZABC and ZACB meet at a point O (this point exists since
triangle ABC' is equilateral).

For X; = min(X7, X5, X3), this happens if and only if P is closer to AB than BC (including
the equal case, X; < X3), and P is closer to AB than AC (including the equal case, X; < X3).
This means P must lie on the side containing point A relative to BO (inclusive), and on the side
containing point B relative to AO (inclusive).

Hence, P must lie on or inside triangle AOB, as shown in the diagram below.
Without loss of generality (since a triangle has order-3 rotational symmetry, and the centre of

symmetry is O), we only consider the case where

X = Xl = min(Xl,Xg,Xg).

This means P must lie on or inside triangle AOB. Consider the cumulative distribution function
of X7 under this condition. By the following diagram, for 0 < z < %, we must have

F(z) =P(X < )
x [AABO] — [AARQ)]

1

The maximum of x is %, and hence F (3) = 1. This means the constant of proportionality, k, must

satisfy )
F(z 1
— (3) =0 — 3\/§7
2z —3z2 —=
{ V3 L:% 3V3
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and hence
F(z) = 3(2x — 327).

Therefore, the probability density function of X for 0 < z < % must satisfy
f(z) =6 —18z = 6(1 — 3z),

and 0 everywhere else, i.e.

fa) = {6(1—3@, 0<z<i,

0, otherwise.

Hence, the expectation of X satisfies

2. Let the regular tetrahedron be ABCD and the centroid be O. Let AB = BC = BD = DA = 1.
By trigonometry, we have

13 _1_\/§z2.1
6v2 3 4 ’
and hence
V3
Nk

Let the perpendicular distances from P to the face BCD, ACD, ABD and ABC be Y1, Y3, Y3 and

Y, respectively, and let
Y = min(¥1,Ys, Y3, Y3).

By similar arguments as before, Y7 = min(Y7,Y5,Y3,Y,) if and only if P is on or inside the
tetrahedron BCDO.
Let G be the cumulative distribution function of Y7 under this condition. For 0 <y < i, we have

G(y) =P <y)

1y 3
x [BCDO] - 1—(41 )1
4
1 V32 1 3
S SR
:L-§-[12y—48y2+64y3]
16v3 2
3
:3—‘2-[12y—48y2+64y3]
\/E(By—12y2+16y3)

8
Since the maximum of y is i, we must have G (i) =1, and hence the constant of proportionality,

k, must satisfy
G (1)

{\/5(3y—12y2+16y3)}
3
y=

k/’:

gls| -
Sl
wl| b

1
1
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Hence,
G(y) = 4 (3y — 12y + 16y°) ,

and the probability density function of ¥ must satisfy for 0 <y < 1
g(y) =4 (3 — 24y +48y*) = 12 (1 — 8y + 16y?) .

Hence,

E(y) = /R yg(y) dy

1
- /4 12 (y — 8y + 16y°) dy
0

— [6y® — 32% + 48y*]
0
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2012.3 Question 13

1. We have
[P20/(2)dz
[P ar(2)dz

f: ze 7 dz

V27 (®(b) — ®(a))

E(Z|la< Z<b)=

~ V2r (D(b) — D(a))
2. Since X =p+o02

EX|X>0=Ep+0cZ|(p+0Z)>0)
=pu+oE(Z|(p+0Z)>0)

=u+aE(Z|Z>—g),

as desired.

Hence,

E(|X])
E(|X|| X >0)-P(X >0)+E(X|| X <0)-P(X <0)
E(X|X >0)-P(X>0)—EX|X<0)-P(X <0)

= [n+oE (212> -2)] - P(u+oz>0)

g

m

- {u+aE(Z\Z<—§)} P(u+o0Z<0)
2

Var (-2 (-E)

R AN IR M = L A

o)) )

B I w )

as desired.

To find the variance of | X|, we would like to find E(|X|*). But this is precisely E(| X|*) = E(X?2) =

Var(X) + E(X)? = 02 + p2. Hence,

Var(|X|) = E(|X[?) — E(|X])?

:02+u2—m2.
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