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2011.3 Question 1

1. By rearrangement, we have
du

u
=

(
1 +

1

x+ 1

)
dx,

and hence by integration,
ln|u| = x+ ln|x+ 1|+ C.

This gives
u = C(x+ 1)ex

as the general solution.

2. Since y = ze−x, we must have

dy

dx
=

dz

dx
e−x − ze−x =

(
dz

dx
− z

)
e−x,

and
d2y

dx2
=

d2z

dx2
e−x − 2

dz

dx
e−x + ze−x =

(
d2z

dx2
− 2

dz

dx
+ z

)
e−x.

Hence, the original differential equation can be simplified:

(x+ 1)
d2y

dx2
+ x

dy

dx
− y = 0

(x+ 1)

(
d2z

dx2
− 2

dz

dx
+ z

)
e−x + x

(
dz

dx
− z

)
e−x − ze−x = 0

(x+ 1)

(
d2z

dx2
− 2

dz

dx
+ z

)
+ x

(
dz

dx
− z

)
− z = 0

(x+ 1)
d2z

dx2
− (x+ 2)

dz

dx
= 0,

which is a first-order differential equation for dz
dx .

Hence, from part (i), we have the general solution to this differential equation is

dz

dx
= C(x+ 1)ex,

and hence by integration

z = C

∫
(x+ 1)ex dx = C

[∫
x dex +

∫
ex dx

]
= C[xex − ex + ex] +D.

Therefore, y = ze−x = De−x + Cx. Let A = C and B = D and this is exactly what is desired.

3. The complementary function is the differential equation solved in the previous part. For the

complementary function, consider y = ax2 + b, and hence dy
dx = 2ax and d2y

dx2 = 2a. Hence,

2a(x+ 1) + x · 2ax− ax2 − c = ax2 + 2ax+ (2a− c) = x2 + 2x+ 1.

Hence, a = 1 and c = 1 giving y = x2 + 1 is a particular integral.

Therefore, the general solution to the differential equation is

y = Ax+Be−x + x2 + 1.
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2011.3 Question 2

By definition,

f(x) =

n∑
k=0

akx
k

where an = 1.
Hence,

qn−1f

(
p

q

)
= qn−1

n∑
k=0

ak

(
p

q

)k

= qn−1
n∑

k=0

akp
kq−k

=

n∑
k=0

akp
kqn−k−1.

For the terms with k = 0, 1, 2, . . . , n− 1, we have n− k − 1 ≥ 0 and hence the terms akp
kqn−k−1 is

an integer, and hence the sum from k = 0 to k = n− 1 is an integer as well.

If p
q is a rational root of f , f

(
p
q

)
= 0, and since all the rest of the terms are integers, the term where

k = n must be an integer as well. When k = n,

akp
kqn−k−1 = anp

nq−1 =
pn

q

must be an integer. But since p and q are co-prime, this can be an integer if and only if q = 1.
Therefore, p

q = p is an integer as well, and any rational root to f(x) = 0 must be an integer.

1. Consider the polynomial f(x) = xn − 2. The nth root of 2 must satisfy 1 < n
√
2 < 2, for n ≥ 2.

This is because 1n = 1 < 2 and 2n = 2 · 2n−1 > 21 = 2.

The nth root of 2 is a root to f . If it is rational, then it must be integer. But 1 < n
√
2 < 2 and so

the nth root of 2 cannot be an integer. Therefore, it must be irrational.

2. Consider the polynomial f(x) = x3 − x+ 1. If the roots to this polynomial are rational, then they
must be integer.

Under modulo 2, x3 ≡ x since 13 ≡ 1 and 03 ≡ 0. Hence, f(x) ≡ x3 − x+1 ≡ 0+ 1 ≡ 1 modulo 2.
This means there is no integer root to f(x) = 0 since the right-hand side is congruent to 0 modulo
2, and hence there are no rational roots.

3. Consider the polynomial f(x) = xn−5x+7. If the roots to this polynomial are rational, then they
must be integer.

For n ≥ 2, under modulo 2, xn ≡ 5x since 1n ≡ 1 ≡ 5 ≡ 5 · 1 and 0n ≡ 0 ≡ 5 · 0. Hence,
f(x) ≡ xn − 5x + 7 ≡ 0 + 7 ≡ 1 modulo 2. This means there is no integer root to f(x) = 0 since
the right-hand side is congruent to 0 modulo 2, and hence there are no rational roots.
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2011.3 Question 3

We have

a(x− α)3 + b(x− β)3 = ax3 − 3aαx2 + 3aα2x− aα3 + bx3 − 3bβx2 + 3bβ2x− bβ3

= (a+ b)x3 − 3(aα+ bβ)x2 + 3(aα2 + bβ2)x− (aα3 + bβ3).

By comparing coefficients, we have
a+ b = 1,

−3(aα+ bβ) = 0 =⇒ aα+ bβ = 0,

3(aα2 + bβ2) = −3p =⇒ aα2 + bβ2 = −p,

−(aα3 + bβ3) = q =⇒ aα3 + bβ3 = −q.

The first pair of equation solve to

(a, b) =

(
− β

α− β
,

α

α− β

)
.

Putting this into the third equation, we can see

LHS =
β

β − α
· α2 − α

β − α
· β2

=
αβ(α− β)

β − α

= −αβ

= −p2

p

= −p

= RHS,

using Vieta’s Theorem for αβ, and for the final one,

LHS =
β

β − α
· α3 − α

β − α
· β3

=
αβ(α2 − β2)

β − α

= −αβ(α+ β)(β − α)

β − α

= −αβ(α+ β)

= −p2

p
·
(
−−q

p

)
= −p · q

p

= −q

= RHS,

using Vieta’s Theorem for αβ and α+ β. Hence, this means for α, β being solutions to pt2 − qt+ p2 = 0
and

(a, b) =

(
− β

α− β
,

α

α− β

)
,

we have
x3 − 3px+ q = a(x− α)3 + b(x− β)3.

In this case here, we have p = 8 and q = 48. Hence, the quadratic equation is

8t2 − 48t+ 82 = 8(t2 − 6t+ 8) = 8(t− 2)(t− 4) = 0,
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which solves to (α, β) = (2, 4) or (α, β) = (4, 2). Without loss of generality, let (α, β) = (2, 4), and hence

(a, b) =

(
− β

α− β
,

α

α− β

)
=

(
− 4

2− 4
,

2

2− 4

)
= (2,−1) ,

Hence, the original cubic equation
x3 − 24x+ 48 = 0

can be simplified to
2(x− 2)3 − (x− 4)3 = 0.

Hence,
2(x− 2)3 = (x− 4)3,

and we have
2

1
3 (x− 2) = ωn(x− 4),

for n = 0, 1, 2 and ω = exp
(
2πi
3

)
.

Rearranging gives us

x =
2
(
2ωn − 2

1
3

)
ωn − 2

1
3

When n = 0, ωn = 1, and hence

x =
2
(
2− 2

1
3

)
1− 2

1
3

.

The other two solutions

x =
2
(
2ω − 2

1
3

)
ω − 2

1
3

, x =
2
(
2ω2 − 2

1
3

)
ω2 − 2

1
3

.

This equation reduces to
x3 − 3r2x+ 2r3 = 0.

This can be factorised to

(x− r)(x2 + rx− 2r2) = (x− r)2(x+ 2r)

and the solutions are
x1,2 = r, x3 = −2r.
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2011.3 Question 4

1. The following two diagrams shows the cases a < b and a > b respectively.

x

y

O

∫ b

0
f−1(x) dx

∫ a

0
f(x) dx

y = f(x)

a

b
(a, b)

x

y

O

∫ b

0
f−1(x) dx

∫ a

0
f(x) dx

y = f(x)

a

b (a, b)

In both cases, the shaded area is greater than the area of the rectangle formed by (0, 0), (a, 0), (a, b)
and (0, b), leading to the inequality. The equal sign holds when b = f(a).

2. Since f(x) = xp−1, we must have x = f−1(x)p−1, and hence f−1(x) = x
1

p−1 . Hence,∫ a

0

f(x) dx =
1

p
[xp]

a
0 =

ap

p
.

Since 1
p + 1

q = 1, we must have 1
q = 1− 1

p = p−1
p , and

q =
p

p− 1
,

and hence
f−1(x) = xq−1,

which gives ∫ b

0

f−1(x) dx =
bq

q
.

Since f is a polynomial, it must be continuous. f(0) = 0p−1 = 0, and

f ′(x) = (p− 1)xp−2

is always non-negative for x ≥ 0, we must have by the original inequality

ab ≤ ap

p
+

bq

q

as desired.

3. Consider the function f(x) = sinx. First, f is continuous, and

f ′(x) = cosx

is always positive for 0 ≤ x ≤ 1
2π. We notice∫ a

0

f(x) dx = [− cosx]a0 = 1− cos a,
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and f−1(x) = arcsinx, and hence for 0 ≤ b ≤ 1,∫ b

0

f−1(x) dx =

∫ b

0

arcsin(x) dx

= [x arcsinx]
b
0 −

∫ b

0

x · 1√
1− x2

dx

=
[
x arcsinx+

√
1− x2

]b
0

= b arcsin b+
√
1− b2 − 1.

Hence, using the given inequality,

ab ≤ b arcsin b+
√
1− b2 − 1 + 1− cos a = b arcsin b+

√
1− b2 − cos a,

as desired.

Let a = 0 and b = t−1. Since t ≥ 1, we have 0 < b ≤ 1, and hence

0 ≤ t−1 arcsin t−1 +
√
1− t−2 − cos 0.

Multiplying both sides by t, and noticing cos 0 = 1, we have

0 ≤ arcsin t−1 +
√
t2 − 1− t,

and hence
arcsin t−1 ≥ t−

√
t2 − 1,

as desired.
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2011.3 Question 5

Since we have
tan θ =

y

x
=⇒ θ = arctan

y

x
+ kπ

for some k ∈ Z, differentiating with respect to t gives us

dθ

dt
=

1

1 +
(
y
x

)2 ·
d y
x

dt
=

x2

x2 + y2
·
xdy

dt − y dx
dt

x2
=

xdy
dt − y dx

dt

r2
.

Hence,

1

2

∫
r2 dθ =

1

2

∫
r2 ·

xdy
dt − y dx

dt

r2
· dt = 1

2

∫ (
x
dy

dt
− y

dx

dt

)
dt,

as desired.
The coordinates of A and B are

A (x− a cos t, y − a sin t) , B (x+ b cos t, y + b sin t) .

Hence, we have

[A] =
1

2

∫ 2π

0

(
xA

dyA
dt

− yA
dxA

dy

)
dt

=
1

2

∫ 2π

0

[
(x− a cos t)

(
dy

dt
− a cos t

)
− (y − a sin t)

(
dx

dt
+ a sin t

)]
dt

=
1

2

∫ 2π

0

(
x
dy

dt
− y

dx

dt

)
dt− a

2

∫ 2π

0

[
cos t

(
dy

dt
+ x

)
+ sin t

(
y − dx

dt

)]
dt

+
a2

2

∫ 2π

0

(
cos2 t+ sin2 t

)
dt

= [P ]− af +
a2

2

∫ 2π

0

dt

= [P ]− af + 2π · a
2

2

= [P ] + πa2 − af,

as desired.
Similarly,

[B] =
1

2

∫ 2π

0

(
xB

dyB
dt

− yB
dxB

dy

)
dt

=
1

2

∫ 2π

0

[
(x+ b cos t)

(
dy

dt
+ b cos t

)
− (y + b sin t)

(
dx

dt
− b sin t

)]
dt

=
1

2

∫ 2π

0

(
x
dy

dt
− y

dx

dt

)
dt+

b

2

∫ 2π

0

[
cos t

(
dy

dt
+ x

)
+ sin t

(
y − dx

dt

)]
dt

+
b2

2

∫ 2π

0

(
cos2 t+ sin2 t

)
dt

= [P ] + bf +
b2

2

∫ 2π

0

dt

= [P ] + bf + 2π · b
2

2

= [P ] + πb2 + bf.

Since over t ∈ [0, 2π], A and B both trace over D, we must have

[A] = [B],

and hence
πa2 − af = πb2 + bf,
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which means
π(a+ b)(a− b) = (a+ b)f,

and hence
f = (a− b)π,

and therefore
[A] = [B] = [P ] + abπ.

The area between the curves C and D is represented as [A]− [P ] or [B]− [P ], and hence this area is
πab, as desired.
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2011.3 Question 6

We show that T is equal to each of U, V,X, and by transitivity, this shows that all four are equal.

• To show T = U , consider the substitution u = 2artanh t, and hence t = tanh u
2 .

When t = 1
2 , u = 2artanh 1

2 = 2 · 1
2 · ln

(
1+ 1

2

1− 1
2

)
= ln 3, and when t = 1

3 , u = 2artanh 1
3 =

2 · 1
2 · ln

(
1+ 1

3

1− 1
3

)
= ln 2.

We have du = 2
1−t2 dt, and hence

T =

∫ 1
2

1
3

artanh t

t
dt

=

∫ ln 3

ln 2

u
2

tanh u
2

·
1− tanh2 u

2

2
du

=

∫ ln 3

ln 2

u

2
·
1− tanh2 u

2

2 tanh u
2

du

=

∫ ln 3

ln 2

u

2 sinhu
du

= U.

• To show T = V , we use integration by parts.

T =

∫ 1
2

1
3

artanh t

t
dt

=

∫ 1
2

1
3

artanh td ln t

= [artanh t ln t]
1
2
1
3

−
∫ 1

2

1
3

ln td artanh t

=

(
artanh

1

2
ln

1

2
− artanh

1

3
ln

1

3

)
−
∫ 1

2

1
3

ln t

1− t2
dt

=

(
1

2
· ln
(
1 + 1

2

1− 1
2

)
· (− ln 2)− 1

2
· ln
(
1 + 1

3

1− 1
3

)
· (− ln 3)

)
+ V

=

(
−1

2
· ln 3 · ln 2 + 1

2
· ln 2 · ln 3

)
+ V

= V.

• To show T = X, consider the substitution x = − 1
2 ln t, and hence t = e−2x.

When t = 1
2 , x = − 1

2 ln
1
2 = 1

2 ln 2, and when t = 1
3 , x = − 1

2 ln
1
3 = 1

2 ln 3.
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We have dx = −dt
2t , and hence

T =

∫ 1
2

1
3

artanh t

t
dt

=

∫ 1
2 ln 2

1
2 ln 3

artanh e−2x

t
· (−2t) dx

=

∫ 1
2 ln 3

1
2 ln 2

2 artanh e−2x dx

=

∫ 1
2 ln 3

1
2 ln 2

ln

(
1 + e−2x

1− e−2x

)
dx

=

∫ 1
2 ln 3

1
2 ln 2

ln

(
ex + e−x

ex − e−x

)
dx

=

∫ 1
2 ln 3

1
2 ln 2

ln cothx dx

= X.
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2011.3 Question 7

1. The base case is when n = 2, and we have

T2 = (
√
a+ 1 +

√
a)2 = (2a+ 1) + 2 ·

√
a(a+ 1).

We therefore have A2 = 2a+ 1 and B2 = 2, and we verify that

a(a+ 1)B2
2 + 1 = a(a+ 1) · 22 + 1 = 4a2 + 4a+ 1 = (2a+ 1)2 = A2

2,

as desired, and the statement holds for the base case when n = 2.

Now, assume that this statement is for some even n = k, i.e.

Tk = Ak +Bk

√
a(a+ 1)

where Ak and Bk are both integers, and A2
k = a(a+ 1)B2

k + 1.

Notice that

Tk+2 = Tk ·
(√

a+ 1 +
√
a
)2

=
(
Ak +Bk

√
a(a+ 1)

)
·
(
2a+ 1 + 2

√
a(a+ 1)

)
= Ak · (2a+ 1) +Bk · 2 · a(a+ 1) + 2Ak

√
a(a+ 1) + (2a+ 1)Bk

√
a(a+ 1)

= [(2a+ 1)Ak + 2a(a+ 1)Bk] + [2Ak + (2a+ 1)Bk]
√
a(a+ 1).

Now let Ak+2 = (2a+1)Ak+2a(a+1)Bk, and Bk+2 = 2Ak+(2a+1)Bk. Since a is a positive integer,
and Ak and Bk are both integers, we must have Ak+2 and Bk+2 are both integers. Furthermore,

A2
k+2 −

[
a(a+ 1)B2

k+2 + 1
]

= [(2a+ 1)Ak + 2a(a+ 1)Bk]
2 −

[
a(a+ 1) (2Ak + (2a+ 1)Bk)

2
+ 1
]

=
[
(2a+ 1)2 − 4a(a+ 1)

]
A2

k

+ [2 · (2a+ 1) · 2a(a+ 1)− 2 · a(a+ 1) · 2 · (2a+ 1)]AkBk

+ [(2a(a+ 1))2 − a(a+ 1)(2a+ 1)2]Bk − 1

= A2
k − a(a+ 1)B2

k − 1

= 1− 1

= 0,

and hence
A2

k+2 = a(a+ 1)B2
k+2 + 1.

So the original statement holds for n = k + 2.

By the principle of mathematical induction, the original statement must hold for all even integers
n.

2. If n is odd, then we have

Tn = (
√
a+ 1 +

√
a)Tn−1

= (
√
a+ 1 +

√
a)(An−1 +Bn−1

√
a(a+ 1))

= An−1

√
a+ 1 +An−1

√
a+Bn−1(a+ 1)

√
a+Bn−1a

√
a+ 1

= (An−1 + aBn−1)
√
a+ 1 + (An−1 + (a+ 1)Bn−1)

√
a.

Now, consider Cn = An−1 + aBn−1, and Dn = An−1 + (a+ 1)Bn−1. Since a is a positive integer,
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and An−1 and Bn−1 are integers, we must have Cn and Dn are integers as well. Furthermore,

(a+ 1)C2
n − (aD2

n + 1)

= (a+ 1) (An−1 + aBn−1)
2 −

[
a (An−1 + (a+ 1)Bn−1)

2
+ 1
]

= [(a+ 1)− a]A2
n−1 + [(a+ 1) · 2 · a− a · 2 · (a+ 1)]An−1Bn−1

+ [(a+ 1)a2 − a(a+ 1)2]B2
n−1 − 1

= A2
n−1 − a(a+ 1)B2

n−1 − 1

= 1− 1

= 0,

and hence
(a+ 1)C2

n = aD2
n + 1.

This shows precisely the original statement.

3. For even n,

Tn = An +Bn

√
a(a+ 1) =

√
A2

n +
√

B2
n · a(a+ 1) =

√
A2

n +
√

A2
n − 1,

and for odd n,

Tn = Cn

√
a+ 1 +Dn

√
a =

√
C2

n(a+ 1) +
√
D2

na =
√

aD2
n + 1 +

√
aD2

n,

as desired.
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2011.3 Question 8

Since w = u+ iv, z = x+ iy, we have

u+ iv = w

=
1 + iz

i+ z

=
1 + i(x+ iy)

i+ (x+ iy)

=
(1− y) + xi

x+ (y + 1)i

=
(1− y) + xi

x+ (y + 1)i
· x− (y + 1)i

x− (y + 1)i

=
[(1− y) + xi] [x− (y + 1)i]

x2 + (y + 1)2

=
(1− y)x+ x(y + 1)

x2 + (y + 1)2
+

x2 − (1− y) · (y + 1)

x2 + (y + 1)2
· i

=
2x

x2 + (y + 1)2
+

x2 + y2 − 1

x2 + (y + 1)2
· i,

and hence

(u, v) =

(
2x

x2 + (y + 1)2
,
x2 + y2 − 1

x2 + (y + 1)2

)
.

1. When y = 0, we have

(u, v) =

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
.

Let x = tan
(
θ
2

)
. The tangent half-angle substitution also gives that u = sin θ and v = − cos θ, and

hence u2 + v2 = 1.

For the range of θ, we have −π
2 < θ

2 < π
2 , which means −π < θ < π.

This represents the unit circle without the point (sinπ,− cosπ) = (0, 1) corresponding to θ =
π(+2kπ) for some integer k.

2. When −1 < x < 1, we have −π
4 < θ

2 < π
4 , which means −π

2 < θ < π
2 . This is the unit circle with

only the part below the u axis (exclusive).

3. When x = 0, we have

(u, v) =

(
0,

y2 − 1

(y + 1)2

)
.

Notice that

v =
y2 − 1

(y + 1)2
=

(y + 1)(y − 1)

(y + 1)2
=

y − 1

y + 1
= 1− 2

y + 1
,

and hence −1 < v < 1.

This means the locus of w is the line segment u = 0,−1 < v < 1.

4. When y = 1, we have

(u, v) =

(
2x

x2 + 4
,

x2

x2 + 4

)
.

First, let x = 2t, and we have

(u, v) =

(
4t

4t2 + 4
,

4t2

4t2 + 4

)
=

(
t

t2 + 1
,

t2

t2 + 1

)
.

Let t = tan
(
θ
2

)
, and we have −π < θ < π. Notice that

u =
1

2
· 2t

t2 + 1
=

1

2
sin θ,

Eason Shao Page 46 of 430



STEP Project Year 2011 Paper 3

and

v − 1

2
=

1

2
· t

2 − 1

t2 + 1
= −1

2
cos θ.

This means the loci is a subset of the circle centred at
(
0, 1

2

)
with radius 1

2 , with the point

(u, v) =

(
1

2
sinπ,

1

2
− 1

2
cosπ

)
= (0, 1)

missing, which corresponds to θ = π(+2kπ) for some integer k.
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2011.3 Question 12

By differentiation, we have
[G(H(t))]′ = G′(H(t)) ·H ′(t).

Hence, we have

E(Y ) = [G(H(t))]′|t=1

= G′(H(1)) ·H ′(1)

= G′(1) ·H ′(1)

= E(N) · E(Xi).

By differentiating twice, we have

[G(H(t))]′′ = G′′(H(t)) ·H ′(t) ·H ′(t) +G′(H(t)) ·H ′′(t).

Hence, we have

Var(Y ) = E(Y (Y − 1)) + E(Y )− E(Y )2

= [G(H(t))]′′|t=1 + E(Y )− E(Y )2

= G′′(H(1)) ·H ′(1) ·H ′(1) +G′(H(1)) ·H ′′(1) + E(Y )− E(Y )2

= G′′(1) ·H ′(1)2 +G′(1) ·H ′′(1) + E(Y )− E(Y )2

= E(N(N − 1)) · E(Xi)
2 + E(N) · E(Xi(Xi − 1)) + E(Y )− E(Y )2

=
[
Var(N) + E(N)2 − E(N)

]
· E(Xi)

2 + E(N) ·
[
Var(Xi) + E(X2

i )− E(Xi)
]

+ E(N) · E(Xi)− E(N)2 · E(Xi)
2

= Var(N) E(Xi)
2 + E(N)Var(Xi).

As defined, we have N ∼ Geo
(
1
2

)
, and hence

G(t) =
1
2 · t

1−
(
1− 1

2

)
t
=

t

2− t
,

and

E(N) = 1/
1

2
= 2,Var(N) =

1− 1
2(

1
2

)2 = 2.

We have Xi ∼ B
(
1, 1

2

)
, and hence

H(t) =
1

2
· t0 + 1

2
· t1 =

1

2
· (1 + t),

and

E(Xi) = 1 · 1
2
=

1

2
,Var(Xi) = 1 · 1

2
· 1
2
=

1

4
.

Hence, for Y =
∑N

i=1 Xi, we have

p.g.f.Y (t) = G(H(t)) =
1
2 (1 + t)

2− 1
2 (1 + t)

=
1 + t

3− t
,

and by the formula for expectation and variance, we have

E(Y ) = E(N) E(Xi) = 2 · 1
2
= 1,

and

Var(Y ) = Var(N) · E(Xi)
2 + E(N) ·Var(Xi) = 2 ·

(
1

2

)2

+ 2 · 1
4
= 1.
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By expressing the probability generating function of Y as a power series, we notice that

p.g.f.Y (t) =
1 + t

3− t

= −1 +
4

3− t

= −1 +
4

3
· 1

1− t
3

= −1 +
4

3

∞∑
r=0

(
t

3

)r

= −1 +
4

3
+

4

3

∞∑
r=1

3−r · tr

=
1

3
+

4

3

∞∑
r=1

3−r · tr,

and hence

P(Y = y) =

{
1
3 , y = 0,
4

3y+1 , otherwise.
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2011.3 Question 13

1. We first find the expression given by the question.

P(X = r + 1)

P(X = r)
=

(
b
n

)r+1 (n−b
n

)k−r−1 ( k
r+1

)(
b
n

)r (n−b
n

)k−r (k
r

)
=

b/n

(n− b)/n
·

k!
(r+1)!(k−r−1)!

k!
r!(k−r)!

=
b

n− b
· r!(k − r)!

(r + 1)!(k − r − 1)!

=
b

n− b
· k − r

r + 1

=
b

n− b
·
(
k + 1

r + 1
− 1

)
,

and we can see that this decreases as r increases.

If the most probable number of black balls in the sample is unique (let it be r0), then we have

P(X = r0 + 1) < P(X = r0) ⇐⇒ P(X = r0 + 1)

P(X = r0)
< 1,

and

P(X = r0 − 1) < P(X = r0) ⇐⇒ P(X = r0)

P(X = r0 − 1)
> 1,

This means r0 is the minimal solution to the inequality

P(X = r + 1)

P(X = r)
< 1.

This could be simplified to

P(X = r + 1)

P(X = r)
< 1

b

n− b

(
k + 1

r + 1
− 1

)
< 1

k + 1

r + 1
− 1 <

n− b

b
k + 1

r + 1
<

n

b

r + 1 >
b(k + 1)

n

r >
b(k + 1)

n
− 1,

and hence

r0 =

⌊
b(k + 1)

n

⌋
.

It is not unique when there exists some r where

P(X = r0 + 1)

P(X = r0)
= 1,

which means there exists an integer r such that

r =
b(k + 1)

n
− 1.

This happens if and only if n | b(k + 1).
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2. Let Y be the number of black balls in the sample. Similarly, we have

P(Y = r + 1)

P(Y = r)
=

( b
r+1)·(

n−b
k−r−1)

(nk)

(br)·(
n−b
k−r)

(nk)

=

b!
(r+1)!(b−r−1)! ·

(n−b)!
(k−r−1)!(n+r−k−b+1)!

b!
r!(b−r)! ·

(n−b)!
(k−r)!(n+r−k−b)!

=
r!(b− r)!(k − r)!(n+ r − k − b)!

(r + 1)!(b− r − 1)!(k − r − 1)!(n+ r − k − b+ 1)!

=
(b− r) · (k − r)

(r + 1) · (n+ r − k − b+ 1)
.

The most probable number of black balls is the smallest solution to

(b− r) · (k − r)

(r + 1) · (n+ r − k − b+ 1)
< 1

(b− r)(k − r) < (r + 1)(n+ r − k − b+ 1)

bk − rk − bk + r2 < nr + r2 − rk − bk + r + n+ r − k − b+ 1

(n+ 2)r > bk + k + b− 1− n

r >
bk + k + b− 1− n

n+ 2

=
(n+ 1)(k + 1)

n+ 2
− 1.

This means the most probable number of black balls, given its uniqueness, is⌊
(b+ 1)(k + 1)

(n+ 2)

⌋
.

It is not unique when
(n+ 1)(k + 1)

n+ 2
− 1

is an integer, if and only if
(n+ 2) | (n+ 1)(k + 1).
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