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2011.3 Question 1

1. By rearrangement, we have

d
“:(1+
u

1
d
x—|—1> ©

Inju| =z +In|lz+ 1|+ C.

and hence by integration,

This gives
u=C(z+1)e"

as the general solution.

T we must have

dy_dz —ze ¥ = (dz —z) e ",

2. Since y = ze~

dz @e dx
and d? d? d d? d
y Z 4 Z . _x z z _x
SY _Cfe 9% — (S22 :
dz? dee dxe +ze (d:c2 dz + Z) €

Hence, the original differential equation can be simplified:

d?y | dy
DY 42y 0
(@ + )da?2 Jrdegc y

d? d d
(x+1) <dx§2d;+z) er+o:<d;z)emzezo

d2z dz dz
(x+1)(dx22dx+z>+x(xz>z()

which is a first-order differential equation for g—;.

Hence, from part (i), we have the general solution to this differential equation is

3—; =C(x+1)e”,

and hence by integration
z:C/(:r—i—l)e””dx:C [/xde”—i—/ewdx} = Clze® —e* +€”] + D.

Therefore, y = ze ™ = De™® + Cx. Let A= C and B = D and this is exactly what is desired.

3. The complementary function is the differential equation solved in the previous part. For the
2
complementary function, consider y = az? + b, and hence g—g = 2ax and 37’; = 2a. Hence,

2a(x + 1) + = - 2ax — ax® — ¢ = az® + 2azx + (2a — ¢) = 2% + 22 + 1.

Hence, a =1 and ¢ = 1 giving y = 22 + 1 is a particular integral.

Therefore, the general solution to the differential equation is

y=Ax+ Be * + 2% + 1.
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2011.3 Question 2
By definition,

where a,, = 1.

Hence,
p = p)
qn—1f< ) _ qn—l Zak ()
q k=0 q
n
=¢" ) aptqt
k=0
n
_ Z akpkqnfkfl
k=0
For the terms with &k = 0,1,2,...,n — 1, we have n — k — 1 > 0 and hence the terms a,pfq"*~1 is
an integer, and hence the sum from k£ =0 to k = n — 1 is an integer as well.
If % is a rational root of f, f % = 0, and since all the rest of the terms are integers, the term where

k = n must be an integer as well. When k = n,

k k—1 1 D"
axp”q"" T = anp"q " = v

must be an integer. But since p and ¢ are co-prime, this can be an integer if and only if ¢ = 1.
Therefore, § = p is an integer as well, and any rational root to f(x) = 0 must be an integer.
1. Consider the polynomial f(z) = 2™ — 2. The nth root of 2 must satisfy 1 < /2 < 2, for n > 2.
This is because 1" =1 <2 and 2" =2-2""1 > 21 = 2.

The nth root of 2 is a root to f. If it is rational, then it must be integer. But 1 < /2 < 2 and so
the nth root of 2 cannot be an integer. Therefore, it must be irrational.

3

2. Consider the polynomial f(x) = x* —x + 1. If the roots to this polynomial are rational, then they

must be integer.
Under modulo 2, 2® = x since 13 = 1 and 0° = 0. Hence, f(z) =2* —2+1=0+1 = 1 modulo 2.

This means there is no integer root to f(z) = 0 since the right-hand side is congruent to 0 modulo
2, and hence there are no rational roots.

3. Cousider the polynomial f(x) = 2™ — 5z + 7. If the roots to this polynomial are rational, then they
must be integer.
For n > 2, under modulo 2, " = 5z since 1" =1 =5=5-1and 0" = 0 = 5-0. Hence,
f(x)=2™ =5z +7=0+47 =1 modulo 2. This means there is no integer root to f(x) = 0 since
the right-hand side is congruent to 0 modulo 2, and hence there are no rational roots.

Eason Shao Page 35 of 430



STEP Project Year 2011 Paper 3

2011.3 Question 3
We have

a(x — a)® + b(z — B)? = az® — 3aax® + 3ac’s — ac® + ba® — 3bBx? + 3b3%x — b33
= (a+b)2® — 3(ac + bB)x? + 3(ac® + bf*)x — (aa® + b33).
By comparing coefficients, we have

a+b=1,

—3(aa+b8) =0 = aa+bs =0,
3(aa® +bB%) = —3p = aa® +bB* = —p,
—(ac® +bB%) =q = ac® +bB% = —q.

The first pair of equation solve to

o= (-5355)

Putting this into the third equation, we can see

B 2 o

LHS = —/—— -a® — - 32
F—a @ B-a’
_apla—B)
8 —a«
= —a/B
_ P
p
=P
= RHS,
using Vieta’s Theorem for o, and for the final one,
B 3 o 3
LHS= — -0 — —— -
F—a * F-a”’
_ap(a® - %)
= o
_ aBla+B)B-a)
b —«
= —aB(a+p)
_ (_—q)
p p
q
p
—-q
= RHS,
using Vieta’s Theorem for a8 and o + 3. Hence, this means for «, 3 being solutions to pt? — gt +p? = 0
and 8
@
(a7b) - (_O[—ﬂ’ 04—6) )
we have

23— 3pr + ¢ = a(r — a)® + bz — B)°.

In this case here, we have p = 8 and ¢ = 48. Hence, the quadratic equation is

812 — 48t + 8% = 8(1? — 6t +8) = 8(t — 2)(t —4) =0,
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which solves to (a, 8) = (2,4) or (o, ) = (4,2). Without loss of generality, let (a, ) = (2,4), and hence

@0 =(-z55755) = (Cemr ) -0

Hence, the original cubic equation

2 — 240 +48 =0

can be simplified to
2(x —2)3 — (x —4)% =0.

Hence,
2(x —2)3 = (x —4)3,

and we have

forn=0,1,2 and w = exp (%)
Rearranging gives us

wn — 23
When n =0, w™ = 1, and hence
2 (2 . 2%)
T
The other two solutions
2(2w—2%) 2(2w2—2%)
T = 1 y U= 1 .
w— 23 w? — 23

This equation reduces to
3 — 3r%z +2r3 = 0.

This can be factorised to
(x —r)(2® +rz —2r?) = (x —r)*(z + 2r)

and the solutions are
T2 =T,T3 = —2r.
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2011.3 Question 4

1. The following two diagrams shows the cases a < b and a > b respectively.

Y )

b

0 )

In both cases, the shaded area is greater than the area of the rectangle formed by (0, 0), (a,0), (a,b)
and (0,b), leading to the inequality. The equal sign holds when b = f(a).

2. Since f(z) = 2?71, we must have x = f~!(2)?~1, and hence f~1(z) = 27 7. Hence,

¢ Lo pa_ @
/Of(ﬂf)dm:z;[x]o— ~

p
Since L +1 =1, we must have £ =1 — 1 =221 4nq
P q q p p
g=—"—
p—1
and hence
7 w) = 2t
which gives
b ba
/ fHz)de = —.
0 q

Since f is a polynomial, it must be continuous. f(0) = 0P~! =0, and
f'(@)

is always non-negative for x > 0, we must have by the original inequality

(p—1)zP?

al bl
ab < — + —
p q

as desired.

3. Cousider the function f(z) =sinz. First, f is continuous, and
f(z) = cosx

is always positive for 0 < z < %w. ‘We notice

/af(x)da: = [—cosz|jg =1— cosa,
0
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and f_l(x) = arcsinzx, and hence for 0 < b <1,

/Ob fHz)dx = /Ob arcsin(x) dx

= [rarcsinz

k /b L4
p— 1’.71'
0 0 V1—z2
b
= {xarcsinx—i— 1—3:2}
0
=barcsinb+ 1 —5b2 — 1.

Hence, using the given inequality,

ab < barcsinb++1—b02—1+1—cosa =barcsinb+ /1 — b2 — cosa,

as desired.

Let a =0 and b =t"!. Since t > 1, we have 0 < b < 1, and hence
0<t tarcsint ™ + /1 —t=2 — cosO.
Multiplying both sides by ¢, and noticing cos0 = 1, we have

0 < arcsint ' + /2 —1—t,

and hence
arcsint ! >t — /12 — 1,

as desired.
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2011.3 Question 5

Since we have

tanf = ¥ — G:arctanngkw
T T

for some k € Z, differentiating with respect to ¢ gives us

%:L'ﬁ: x? CE(ciiztl_ydt :xiztl_ydt
dt 14 (g>2 dt 224y x? r2
Hence,
1 2 1 2 x(cily—y 1 dy dx
- do = - tidt-dt:f/ — —y— | dt
2/T 2/T 2 o) \Far Yar )"
as desired.

The coordinates of A and B are
A(x —acost,y —asint), B (x + bcost,y + bsint).

Hence, we have

o
3

dyJ —yAdxyA> dt

dy . dz .
(x — acost) (dt —acost) (y — asint) (dt —‘y—&blnt)] dt

) ar - a/27r (W) sint (y— ) | a
3/, cos 1 T S y i

27

/ (COb t + sin? t) dt

2 2m
:[P]—af+%/0 dt

2m

2le
|

+

w\»—l w\»—* w\»—*

w‘@i\?c\ c\l\gc\
)

/—\'ﬁ/—\

:[P]faf+27r~a—2

2
= [P]+7Ta27af7
as desired.
Similarly,
1 [ dyp drp
Bl =~ Y5
=g | (on -y
1 2m
= 5/0 {(a: + bcost) (ilth —|—bcost) (y + bsint) (it — bsmt)} d¢
1 (™ ( dy dx b [ dy ) da
—5/0 (a:dt— )dt—|—2/0 {cost(dt—&-x)—&-bmt(y—dt)]dt

27
+ — / (0052 t + sin® t) dt
0

b2 27
:[P]+bf+—/ dt
2 Jo

2
:[P]+bf+27r~%

= [P] + 7b? + bf.

Since over t € [0, 27], A and B both trace over D, we must have

and hence
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which means
m(a+b)(a—0b)=(a+D)f,

and hence
f = (CL - b)ﬂ—a
and therefore
[A] = [B] = [P] + abr.

The area between the curves C and D is represented as [A] — [P] or [B] — [P], and hence this area is
mab, as desired.
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2011.3 Question 6

We show that T is equal to each of U, V, X, and by transitivity, this shows that all four are equal.

e To show T'= U, consider the substitution u = 2artanh, and hence ¢ = tanh 5.

When ¢t = % = 2artanh% =2 %ln(i_%) = In3, and when ¢t = %, U = Zartanh% =
2
1 1+g
2~§-1n(172> In2.
We have du = dt, and hence

1152

T

/ 2 artanht

/1n3 5 lftanh2“d
m2 tanhg 2

/1“3 w 1—tanh® ¥
n " 2tanh ¥

In
- /1n2 QSmhu

e To show T =V, we use integration by parts.

T /é artinht a
1

1
3
= / artanhtdlInt
1
3

= [artanh?Int];

[MEaME

1
3
/ Intdartanht
1
3

1.1 11 : Int
—(artanh21n2—artanh3ln3)—/é 1ftht

( ( > (—In2) - ; 1n<1i—§’)>-(—ln3)>+V
S

-In3-In2 + 5 In2- 1n3) +V
e To show T'= X, consider the substitution z = —5 Int, and hence ¢ = e 2%,

Whent:% xf771n7:11n2 andwhent*% x:félnézéln&

I
l\D\»—l
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We have dx = —%, and hence

T_ /é artanh ¢ dt
1 t

1 o
202 grtanh e 2@

- (—2t)dz
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2011.3 Question 7

1. The base case is when n = 2, and we have
Ty=(Wa+1+Va)?=(2a+1)+2-ala+1).
We therefore have As = 2a + 1 and By = 2, and we verify that
ala+1)Bi+1=ala+1)-22+1=4a>+4a+ 1= (2a+1)* = A3,

as desired, and the statement holds for the base case when n = 2.

Now, assume that this statement is for some even n = k, i.e.

Ty = Ax + Biva(a+ 1)

where Ay and By are both integers, and A7 = a(a + 1)B? + 1.
Notice that

Thyo =T - (\/an \/5)2
- (Ak+Bk a(a—!—l)) - (2a+1+2\/m>
= A (2a+1)4 By -2-ala+1) + 24x/a(a+ 1) + (2a + 1) By/a(a + 1)
= [(2a + 1)Ag + 2a(a + 1)By] + [24), + (2a + 1)By] va(a + 1).
Now let Agyo = (2a+1)Ar+2a(a+1)By, and Byyo = 2A;+(2a+1)By. Since a is a positive integer,
and Ay and Bj are both integers, we must have Ag o and B9 are both integers. Furthermore,
Aiys — [ala+1)By +1]
= [(2a + 1) Ay + 2a(a + 1) By)> — [a(a +1) (245 + (20 + 1)By)? + 1}
= [(2a+1)*> — 4a(a + 1)] A7
+[2-2a+1)-2a(a+1)—2-a(a+1)-2-(2a+1)] A B
+[(2a(a+1))* —ala+1)(2a + 1)} By — 1
=A? —ala+1)Bf — 1
=1-1
=0,

and hence
Ai o, =ala+1)Bp ,+1.

So the original statement holds for n = k + 2.

By the principle of mathematical induction, the original statement must hold for all even integers
n.

2. If n is odd, then we have
T, = (Va+1+\/&)Tn71
— (VaF 1+ va) (A1 + Bu_1+/ala + 1))

=Apava+1+ An—l\/a'"" Bn—l(a + 1)\/6+ By 1ava+1
= (4,1 +aB,_1)Va+1+(4,_1+ (a+1)B,_1)Va.

Now, consider C,, = A,,—1 +aB,,_1, and D,, = A,,_1 + (a+ 1)B,—1. Since a is a positive integer,
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and A, _1 and B,_; are integers, we must have C,, and D,, are integers as well. Furthermore,

(a4 1)C% — (aD? +1)

= (@+1) (An-1+0Bp-1)’ = [a (An-1 + (a+ D) Bp-1)” +1]
=[a+1)—a]lA% | +[a+1)-2-a—a-2-(a+1)]A,_1Bn_1

+[(a+1)a® — a(a + 1)2]33_1 -1

=A% | —ala+1)B% |, -1
=1-1
:()’

and hence

(a+1)C2 = aD2 + 1.

This shows precisely the original statement.

3. For even n,

T,=A,+ Bpvala+1)=+/A2 ++/B2-ala+1) =+/A2 + /A2 — 1,

and for odd n,

T, = CoVa+1+ Dyva=+/C2(a+1)+/D2a = \/aD2 + 1+ \/aD2,

as desired.
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2011.3 Question 8

Since w = u + v, z = x + iy, we have

U+ =w
R
itz
1+ i(x +iy)
i+ (x +iy)
(I —y) i
x4+ (y+1)
-y +ai a—(y+1)
St (y+ )i oo —(y+ 1)
(1 —y) il lr— (y+ 1)i
2+ (y+1)?
_(Q—yartay+l) 2-(1Q-y -+l
2+ (y +1)? 22+ (y +1)2
2x 22 4+y? -1

= + -1,
?+(y+1)?2 22+ (y+1)?

2z 2?2 4+y? -1
(’LL,’U)Z 2 27 .2 2 /"
24+ (y+ 12722+ (y+1)

(u, ) 2¢ 22-1

uv)=———,—— .

’ 2 4+17 2241

Let z = tan (g) The tangent half-angle substitution also gives that v = sinf and v = — cos 6, and
hence u? +v? = 1.

and hence

1. When y = 0, we have

For the range of 6, we have —5 < g < 5, which means —m < 0 <.
This represents the unit circle without the point (sinm, —cosw) = (0,1) corresponding to § =
m(42km) for some integer k.

2. When —1 <z <1, we have - < g < %, which means —5 < 6 < 5. This is the unit circle with

only the part below the u axis (exclusive).

L, V-l -1 _y-1_, 2
(y+1)2 (y +1)2 y+1 y+1’
and hence —1 < v < 1.

3. When z = 0, we have

Notice that

This means the locus of w is the line segment ©u =0, -1 < v < 1.
(u, v) 2x x?
uv)=———,—— .
’ 22 4+4" 22 +4
First, let x = 2t, and we have

4t 442 t 12
W)= ) =35
42 + 47 42 + 4 24172241

Let t = tan (g), and we have —m < 6 < w. Notice that

4. When y = 1, we have

2% 1.
Zrl o 27

1
U= —-
2
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and

This means the loci is a subset of the circle centred at (07 %) with radius %, with the point

1 1 1
(u,v) = <2 sin, 3~ 2cos7r) =(0,1)

missing, which corresponds to § = w(42k7) for some integer k.
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2011.3 Question 12

By differentiation, we have

Hence, we have

By differentiating twice, we have
[G(H(1)]" = G"(H(t)) - H'(t) - H'(t) + G'(H(t)) - H"(t).

Hence, we have

Il
=
=
=
|
=
=
s
e
_|_
=
3
o=

1
= .t t
G(t) = 2 = ,
() 1-(1—3)t 2—t
and
1 1-1
E(N)=1/= =2,Var(N) = —2 =2
2 (3)
2
We have X; ~ B (1, %), and hence
Ht)=--t"+= tl—l-(1+t)
2 2
" s =12 = L vargry =11 12
DTy TR E s T

Hence, for Y = ZZJ\LI X;, we have

and
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By expressing the probability generating function of Y as a power series, we notice that

14¢

.g.f. = —
p.gfy (1) 3¢

and hence

1
3 :Ov
P(Yy){34 Y

mp¥7, Otherwise.
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2011.3 Question 13
1. We first find the expression given by the question.

k!
b/n GFDNk—r—1)1

(n—">b)/n %

b rl(k —r)!
n—b (r+0k—r—1)
b k—r

n—b r+1

b k+171
T n—=b \r+1 ’

and we can see that this decreases as r increases.

If the most probable number of black balls in the sample is unique (let it be 7¢), then we have

P(X = ro+1)

P(X = rp+1) < P(X = PX =rt+l)

(X =) <PX=r) = g n 5= <1,
and P(X = 10)
EX

P(X=rg—1) <P(X =rg) &= —o 10~y

(K =ro—1) <P(X =r0) PX=ro—1)

This means rg is the minimal solution to the inequality

P(X =r+1)

p(Xx=r "

This could be simplified to

and hence

:{Mk+UJ

It is not unique when there exists some r where

P(X:T’(]‘Fl)il
P(X=ry)

which means there exists an integer r such that

b(k + 1)

-1

This happens if and only if n | b(k + 1).
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2. Let Y be the number of black balls in the sample. Similarly, we have

(ril)(ki;ﬁl)
PY=r+1) B
P(Y =r) ()-(=)
(%)
b! (n—b)!
(r+D)I(b—r—1)! * (k—r—1)!(n+r—k—b+1)!
- bl (n—b)!

r1(o—r)! "~ (k—r)(n+r—k—b)!
B rl(b—r)(k —r)(n+r—k—0b)!
D) —r—Dlk—r—D!(n+r—k—b+1)
_ (b-r)(k-1)
(r+1)-(n+r—k—>b+1)

The most probable number of black balls is the smallest solution to

b=r)-(k—=r)
(r+1)-(n+r—k—->5+1)
b-—r)k—r)<(r+1)n+r—k—>b+1)

bk —rk—bk+1* <nr+r>—rk—bk+r+n+r—k—->b+1

(n+2)r>bk+k+b—1—n

. bk+k+b—1-n

n+2
(n+1)(k+1)

= 1.
n+2

<1

This means the most probable number of black balls, given its uniqueness, is

i)

It is not unique when
(n+1)(k+1)
n 4+ 2

is an integer, if and only if
(n+2)| (n+1)(k+1).
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