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2024.3 Question 7

1. For the left inequality, f(n) > 0 since f(n) > n%_l > 0.

For the right inequality, we notice that
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2. For the left inequality, by grouping consecutive terms, we have
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For the right inequality, by grouping consecutive after the first one, we have
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3. The infinite series for e is given by
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Since ¢ < 2n, the terms in the sum represents the number of ways to arrange (2n — t) items out of
2n items, which must be integers. Hence, the sum is an integer as well.

Similarly, the infinite series for e~! is given by

and notice that
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Hence,

and by the same argument, since ¢ < 2n, this must be an integer as well.
4. By the previous part, let a(n) = f(2n) — (2n)le, and b(n) = g(2n) + @, we must have that
a,b: N — Z since they are integers.

Using this notation,

qf(2n) + pg(2n) = qa(2n) + qe(2n)! + pb(2n)

- §(2n)!

= qa(2n) + pb(2n) + (qe — g) (2n)!
= ga(2n) + pb(2n)
must be an integer, since p, g, a(2n),b(2n) are all integers.

5. Assume B.W.0O.C. that e? is irrational. Then there exists natural numbers p, ¢ such that

2=L — g="L
e

q
Since e2 > 1, p > q.
On one hand, we have ¢f(2n) + pg(2n) > 0.
On the other hand, let n = p,

1 1
qf(2n) + pg(2n) <q-%+p~ 21
1 1
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_pty
2p
2p
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=1.

This means
0 < qf(2p) +pg(2p) < 1.

But by the previous part, ¢f(2n) + pg(2n) is an integer for all positive integer n, and n = p is a
positive integer. This leads to a contradiction.

Hence, such p and g does not exist, meaning e? is not rational, hence e? is irrational.
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