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2024.3 Question 11
1. We notice that

LHS = r (2")
.
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as desired.

Summing this from r = n + 1 to 2n, we have
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as desired.
2. For n +1 <z < 2n, we have
2n
PX=2x2)=2 (z)

For x = n, we have
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We have n < X < 2n, and hence

E(X)=) 2P(X =x)

n(zg) 9 X 2n
o +2E Z x(x
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2n 2n
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_ TL2(27;L) + 272”’(271)22“71
n(5)
=n+ 2271,

as desired.

3. First, we have that
1 [2n <0
22n \ n

Taking the ratio of two consecutive terms, we have

for all positive integers n.

2 (%) 2n+2 G0y
1 (2(n+1)) - 92n (2n+2)!
22(n+D) \ n41 (n+1)(n+1)!

(n+1)2
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We have that the following are equivalent:

1 (2n 1 [2(n+1)
2\ n )~ e\ ng1

7 ()
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57075 (1)

4(n +1)2
(2n+2)(2n+1)
4n® + 8n +4 > 4n® 4+ 6n + 2
2n+2>0

>1

and this obviously true for all positive integers n.

. 2 .
This means that 2% (7_?) decreases as n increases.

4. The winning is given by X — n, and hence the expected winnings per pound is 2%” (2"). This is

maximised when n = 1 which gives a value of %

n
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