2024.2 Question 5

1. We have

and so

$$f_1(n) = n^2 + 6n + 11 = (n+3)^2,$$

$$f_1(\mathbb{Z}) = \{ (n+3)^2 + 2 \mid n \in \mathbb{Z} \}.$$

But since if $n \in \mathbb{Z}, n+3 \in \mathbb{Z}$, and if $n+3 \in \mathbb{Z}, n \in \mathbb{Z}$, so

$$f_1(\mathbb{Z}) = \{ (n+3)^2 + 2 \mid n \in \mathbb{Z} \} = \{ n^2 + 2 \mid n \in \mathbb{Z} \}.$$

We have $F_1(\mathbb{Z}) = \{n^2 + 2 \mid n \in \mathbb{Z}\}$, and so $f_1(\mathbb{Z}) = F_1(\mathbb{Z})$, which shows f_1 and F_1 has the same range/

2. We have

$$g_1(n) = n^2 - 2n + 5 = (n-1)^2 + 4,$$

and so

$$g_1(\mathbb{Z}) = \{(n-1)^2 + 4 \mid n \in \mathbb{Z}\} = \{n^2 + 4 \mid n \in \mathbb{Z}\}.$$

The quadratic residues modulo 4 are 0 and 1, and so

 $f_1(\mathbb{Z}) \subseteq \{0+2, 1+2\} = \{2, 3\} \mod 4,$

and

$$g_1(\mathbb{Z}) \subseteq \{0+4, 1+4\} = \{0, 1\} \mod 4$$

Under modulo 4, $f_1(\mathbb{Z}) \cap g_1(\mathbb{Z}) \subseteq \{2,3\} \cap \{0,1\} = \emptyset$. Hence, $f_1(\mathbb{Z}) \cap g_1(\mathbb{Z}) = \emptyset$ under modulo 4, and hence $f_1(\mathbb{Z}) \cap g_1(\mathbb{Z}) = \emptyset$.

3. We have

$$f_2(n) = n^2 - 2n - 6 = (n - 1)^2 - 7,$$

and so

$$f_2(\mathbb{Z}) = \{ (n-1)^2 - 7 \mid n \in \mathbb{Z} \} = \{ n^2 - 7 \mid n \in \mathbb{Z} \}.$$

Similarly,

$$g_2(n) = n^2 - 4n + 2 = (n-2)^2 - 2,$$

and so

$$g_2(\mathbb{Z}) = \{(n-2)^2 - 2 \mid n \in \mathbb{Z}\} = \{n^2 - 2 \mid n \in \mathbb{Z}\}$$

So for the intersection, if $t \in f_2(\mathbb{Z}) \cap g_2(\mathbb{Z})$, then there exists $n_1, n_2 \in \mathbb{Z}$,

$$t = n_1^2 - 7 = n_2^2 - 2,$$

and hence

$$n_1^2 - n_2^2 = (n_1 + n_2)(n_1 - n_2) = 5$$

So

$$(n_1 + n_2, n_1 - n_2) = (\pm 1, \pm 5)$$
 or $(\pm 5, \pm 1)$,

and hence

$$(n_1, n_2) = (\pm 3, \pm 2)$$
 or $(\pm 3, \pm 2)$

which gives

$$t = (\pm 3)^2 - 7 = 2.$$

Therefore,

$$f_2(\mathbb{Z}) \cap g_2(\mathbb{Z}) = \{2\},\$$

and 2 is the only integer which lies in the intersection of the range of f_2 and g_2 .

4. Since $p, q \in \mathbb{R}$, we must have $p + q, p - q \in \mathbb{R}$ and hence

$$(p+q)^2 = p^2 + 2pq + q^2 \ge 0,$$

 $(p-q)^2 = p^2 - 2pq + q^2 \ge 0.$

Hence,

$$\frac{3}{4}(p+q)^2 + \frac{1}{4}(p-q)^2 = \frac{3}{4}\left(p^2 + 2pq + q^2\right) + \frac{1}{4}\left(p^2 - 2pq + q^2\right)$$
$$= p^2 + pq + q^2$$
$$\ge 0,$$

as desired.

We have

(

$$f_3(n) = n^3 - 3n^2 + 7n = (n-1)^3 + 4n + 1 = (n-1)^3 + 4(n-1) + 5,$$

and so

$$f_3(\mathbb{Z}) = \{(n-1)^3 + 4(n-1) + 5 \mid n \in \mathbb{Z}\} = \{n^3 + 4n + 5 \mid n \in \mathbb{Z}\}.$$

We have

$$g_3(\mathbb{Z}) = \{n^3 + 4n - 6 \mid n \in \mathbb{Z}\}.$$

So if $t \in f_3(\mathbb{Z}) \cap g_3(\mathbb{Z})$, then there exists $n_1, n_2 \in \mathbb{Z}$ such that

$$t = n_1^3 + 4n_1 + 5 = n_2^3 + 4n_2 - 6.$$

Hence,

$$n_1^3 - n_2^3$$
) + 4($n_1 - n_2$) = ($n_1 - n_2$)($n_1^2 + n_1n_2 + n_2^2 + 4$) = -11.

Since $n_1^2 + n_1n_2 + n_2^2 \ge 0$ by the lemma in the previous part, we have $n_1^2 + n_1n_2 + n_2^2 + 4 \ge 4$. But $n_1^2 + n_1n_2 + n_2^2 + 4 \mid -11$, and so

$$n_1^2 + n_1n_2 + n_2^2 + 4 = 11, n_1 - n_2 = -1.$$

Putting $n_2 = n_1 + 1$ into the first equation, we have

$$n_1^2 + n_1n_2 + n_2^2 + 4 = n_1^2 + n_1(n_1 + 1) + (n_1 + 1)^2 + 4$$

= $n_1^2 + n_1^2 + n_1 + n_1^2 + 2n_1 + 1 + 4$
= $3n_1^2 + 3n_1 + 5$
= 11.

and hence

$$3n_1^2 + 3n_1 - 6 = 3(n_1 + 2)(n_1 - 1) = 0,$$

which gives $n_1 = -2$ or $n_1 = 1$, and they correspond to $n_2 = -1$ or $n_2 = 2$. Hence,

$$t = (-1)^3 + 4(-1) - 6 = -1 - 4 - 6 = -11,$$

or

$$t = 2^3 + 4 \cdot 2 - 6 = 8 + 8 - 6 = 10.$$

Hence,

$$f_3(\mathbb{Z}) \cap g_3(\mathbb{Z}) = \{-11, 10\},\$$

and the integers that lie in the intersection of the ranges are -11 and 10.