STEP Project Year 2023 Paper 3

2023.3 Question 8

1. By differentiating, we have

$$f'(x) = e^{-x} - xe^{-x} = e^{-x} - f(x),$$

and

$$f''(x) = -e^{-x} - f'(x).$$

Hence,

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = f''(x) + 2f'(x) + f(x)$$

$$= -e^{-x} - f'(x) + f'(x) + e^{-x} - f(x) + f(x)$$

$$= 0$$

as desired.

Evaluating y and y' at x = 0 gives us

$$y|_{x=0} = f(0) = 0 \cdot e^{-0} = 0$$

and

$$y'|_{x=0} = f'(0) = e^{-0} - f(0) = 1 - 0 = 1.$$

For the final part, we factorise f'(x) to get $f'(x) = (1-x)e^{-x}$.

 $e^{-x} > 0$ for all x. Therefore, for $x \le 1$, $1 - x \ge 0$, and hence $f'(x) \ge 0$.

2. We let $g_1(x) = f(x) = xe^{-x}$, and we can immediately see that this differential equation is satisfied by $x \le 1$.

For $y = g_2(x)$ where $x \ge 1$, we notice $g_2(1) = g_1(1) = 1 \cdot e^{-1} = \frac{1}{e}$, and $g_2'(1) = g_1'(1) = f'(1) = e^{-1} - f(1) = \frac{1}{e} - \frac{1}{e} = 0$.

If $g'_2(x) \ge 0$ for $x \ge 1$, then g_2 and g_1 satisfies the same differential equation and boundary conditions (at x = 1), which means they are the same solution.

However, this is impossible since $g_1'(x) < 0$ for x > 1.

Therefore, it must be the case that $g_2'(x) \le 0$ for $x \ge 1$, and hence we have $g_2''(x) - 2g_2'(x) + g_2(x) = 0$ as our differential equation.

The characteristic equation solves to $\lambda_{1,2} = 1$, and hence the general solution to g_2 is $g_2(x) = (A + Bx)e^x$.

By differentiating, we have

$$g_2'(x) = Be^x + (A + Bx)e^x = Be^x + g_2(x).$$

Considering the boundary conditions, we first have $g_2(1) = \frac{1}{e}$, meaning that $(A+B)e = \frac{1}{e}$, and hence $A+B=e^{-2}$.

We have as well $g'_2(1) = 0$, and hence $0 = B \cdot e + \frac{1}{e}$, giving us $B = -e^{-2}$.

Therefore, $A = 2e^{-2}$, and hence

$$g_2(x) = (2e^{-2} - e^{-2}x) e^x$$
$$= e^{-2}(2 - x)e^x$$
$$= (2 - x)e^{x-2}.$$

3. We notice that $g_2(x) = g_1(2-x)$, and hence $g_2(1+x) = g_1(1-x)$. This means they are symmetric about the line x = 1.

Eason Shao Page 397 of 459

STEP Project Year 2023 Paper 3

4. We first consider the range that x is in. We replace x with c-x to acquire

$$r \le c - x \le s \iff -r \ge -c + x \ge -s$$

 $\iff -r + c \ge x \ge -s + c$
 $\iff -s + c \le x \le -r + c.$

In other words,

$$x \in [-s+c, -r+c] \iff c-x \in [r, s].$$

If y = k(c-x), then we have $y' = (-1) \cdot k'(c-x)$, and $y'' = (-1)^2 \cdot k''(c-x) = k''(c-x)$. Therefore,

$$\frac{d^2y}{dx^2} - p\frac{dy}{dx} + qy = k''(c-x) + pk'(c-x) + qk(c-x)$$

= $k''(t) + pk'(t) + qk(t)$

for $t = c - x \in [r, s]$.

Since y = k(x) is a solution to the original differential equation for $r \le x \le s$, we must have k''(t) + pk'(t) + qk(t) = 0, and therefore y = k(c - x) satisfies the new differential equation for $-s + c \le x \le -r + c$.

5. By differentiating h, we have

$$h'(x) = -e^{-x}\sin x + e^{-x}\cos x = e^{-x}(\cos x - \sin x).$$

Therefore,

$$h'\left(\frac{1}{4}\pi\right) = e^{-\frac{1}{4}\pi} \left(\cos\frac{\pi}{4} - \sin\frac{\pi}{4}\right)$$
$$= e^{-\frac{1}{4}\pi} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)$$
$$= 0$$

Similarly,

$$h'\left(-\frac{3}{4}\pi\right) = e^{\frac{3}{4}\pi}\left(-\frac{\sqrt{2}}{2} - \left(-\frac{\sqrt{2}}{2}\right)\right) = 0.$$

For $x \in \left[-\frac{3}{4}\pi, \frac{1}{4}\pi\right]$, the differential equation satisfied by h without the absolute value sign is

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0$$

since $h'(x) \ge 0$.

(a) Let $c = \frac{\pi}{2}$. For $x \in \left[\frac{\pi}{2} - \frac{\pi}{4}, \frac{\pi}{2} + \frac{3\pi}{4}\right] = \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$, by the previous lemma, $y = h\left(\frac{\pi}{2} - x\right)$ must be a solution to

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0.$$

Notice that

$$y' = -h'\left(\frac{\pi}{2} - x\right),\,$$

and that $x \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \iff \frac{\pi}{2} - x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right]$, and hence $h'\left(\frac{\pi}{2} - x\right) \ge 0$, which means $y' \le 0$. Therefore, in $x \in \left[\frac{1}{4}\pi, \frac{5}{4}\pi\right]$, $y = h\left(\frac{\pi}{2} - x\right)$ satisfies

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2 \left| \frac{\mathrm{d}y}{\mathrm{d}x} \right| + 2y = 0,$$

which is the original differential equation.

Eason Shao Page 398 of 459

STEP Project Year 2023 Paper 3

We show next that this is continuously differentiable at $x = \frac{1}{4}\pi$. It is continuous since

$$h\left(\frac{1}{4}\pi\right) = h\left(\frac{\pi}{2} - \frac{1}{4}\pi\right) = h\left(\frac{1}{4}\pi\right).$$

We have $h'(x)|_{x=\frac{1}{4}\pi}=0$, and

$$-h'\left(\frac{\pi}{2} - x\right)\Big|_{x = \frac{1}{2}\pi} = -h'\left(\frac{\pi}{4}\right) = 0,$$

so it is continuously differentiable at $\frac{1}{4}\pi$. Hence,

$$y = h\left(\frac{\pi}{2} - x\right)$$
$$= e^{x - \frac{\pi}{2}} \sin\left(\frac{\pi}{2} - x\right)$$
$$= e^{x - \frac{\pi}{2}} \cos x,$$

for $x \in \left[\frac{1}{4}\pi, \frac{5}{4}\pi\right]$.

(b) As shown above, for $x \in \left[\frac{1}{4}\pi, \frac{5}{4}\pi\right]$, $y = h\left(\frac{\pi}{2} - x\right)$ satisfies

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0.$$

Let $c = \frac{5\pi}{2}$. For $x \in \left[\frac{5\pi}{2} - \frac{5}{4}\pi, \frac{5\pi}{2} - \frac{1}{4}\pi\right] = \left[\frac{5}{4}\pi, \frac{9}{4}\pi\right]$,

$$y = h\left(\frac{\pi}{2} - \left(\frac{5\pi}{2} - x\right)\right) = h(x - 2\pi)$$

satisfies

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0.$$

We have

$$y' = h'(x - 2\pi) = h'\left(\frac{\pi}{2} - \left(\frac{5\pi}{2} - x\right)\right),\,$$

and $x \in \left[\frac{5}{4}\pi, \frac{9}{4}\pi\right] \iff \frac{5}{2}\pi - x \in \left[\frac{1}{4}\pi, \frac{5}{4}\pi\right]$, and this therefore means $h'\left(\frac{\pi}{2} - \left(\frac{\pi}{2} - x\right)\right) \ge 0$. Hence, in $x \in \left[\frac{5}{4}\pi, \frac{9}{4}\pi\right]$, $y = h(x - 2\pi)$ satisfies

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2 \left| \frac{\mathrm{d}y}{\mathrm{d}x} \right| + 2y = 0.$$

We show next that this is continuously differentiable at $x = \frac{5}{4}\pi$. It is continuous since

$$h\left(\frac{\pi}{2} - \frac{5}{4}\pi\right) = h\left(-\frac{3}{4}\pi\right) = h\left(\frac{5}{4}\pi - 2\pi\right).$$

We have

$$h'\left(\frac{\pi}{2} - x\right)\Big|_{x = \frac{5}{4}\pi} = -h'(x)\Big|_{x = -\frac{3}{4}\pi} = -0 = 0,$$

and

$$h'(x-2\pi)|_{x=\frac{5}{4}\pi} = h'(x)|_{x=-\frac{3}{4}\pi} = 0,$$

and so it is continuously differentiable at $x = \frac{5}{4}\pi$. Therefore,

$$y = h(x - 2\pi)$$

$$= e^{-x+2\pi} \sin(x - 2\pi)$$

$$= e^{2\pi - x} \sin x$$

for $x \in \left[\frac{5}{4}\pi, \frac{9}{4}\pi\right]$.

Eason Shao Page 399 of 459