STEP Project Year 2023 Paper 3

2023.3 Question 5

1. If x, y are both non-zero,

$$\frac{1}{x} + \frac{2}{y} = \frac{2}{7}$$

$$7y + 2 \cdot 7x = 2xy$$

$$2xy - 14x - 7y = 0$$

$$2xy - 14x - 7y + 49 = 49$$

$$2x(y - 7) - 7(y - 7) = 49$$

$$(2x - 7)(y - 7) = 49.$$

We must have $2x - 7 \ge 2 \cdot 1 - 7 = -5$ and $y - 7 \ge 1 - 7 = -6$.

2x - 7 and y - 7 are both integers, and we do casework considering expressing 49 into a product of two integers that are both not less than -6.

- $49 = 1 \times 49$, 2x 7 = 1 and y 7 = 49, giving us (x, y) = (4, 56).
- $49 = 7 \times 7$, 2x 7 = 7 and y = 7 = 7, giving us (x, y) = (7, 14).
- $49 = 49 \times 1$, 2x 7 = 49 and x 7 = 1, giving us (x, y) = (28, 8).

Since all x, y are non-zero, we can conclude that the solutions are (x, y) = (4, 56), (7, 14), (28, 8).

2. We have

$$p^{2} + pq + q^{2} = n^{2}$$

$$p^{2} + 2pq + q^{2} = n^{2} + pq$$

$$(p+q)^{2} = n^{2} + pq$$

$$(p+q)^{2} - n^{2} = pq$$

$$(p+q+n)(p+q-n) = pq.$$

We must have p+q+n>p+q-n since n is a positive integer. We have p+q+n>p, q>1>0. It must be the case that p+q-n is positive as well.

Therefore, p+q+n cannot be 1, p, q, and it must be the case that p+q+n=pq and p+q-n=1.

Therefore, p + q = n + 1, and pq = p + q + n = 2n + 1.

Hence, p, q are solutions to the quadratic equation in t

$$t^{2} - (n+1)t + (2n+1) = 0.$$

Solving this gives us

$$p, q = \frac{(n+1) \pm \sqrt{(n+1)^2 - 4 \cdot (2n+1)}}{2}$$
$$= \frac{(n+1) \pm \sqrt{n^2 - 6n - 3}}{2}.$$

We have $n^2 - 6n - 3 = (n - 3)^2 - 12$ must be a perfect square for p, q to be rational (and they are since all integers are rational).

Consider $a, b \ge 0$, $a, b \in \mathbb{N}$ such that $a^2 - b^2 = (a + b)(a - b) = 12$.

a+b and a-b must take the same odd-even parity, and the only possibility is therefore a+b=6 and a-b=2, solving to (a,b)=(4,2).

Therefore, n-3=4, n=7, and we solve for

$$p, q = \frac{8 \pm \sqrt{49 - 42 - 3}}{2} = 4 \pm 1$$

and (p,q)=(3,5),(5,3) are indeed primes, and n=7.

Eason Shao Page 390 of 459

STEP Project Year 2023 Paper 3

3. If $p+q-n \ge p$, then $q \ge n$, and for the original equation,

LHS =
$$p^3 + q^3 + 3pq^2 > q^3 \ge n^3 = \text{RHS},$$

and hence LHS > RHS is impossible. Hence, p + q - n < p.

It must also be the case for p + q - n < q.

We have

$$p^{3} + q^{3} + 3pq^{2} = n^{3}$$

$$p^{3} + q^{3} + 3pq^{2} + 3p^{2}q = n^{3} + 3p^{2}q$$

$$(p+q)^{3} = n^{3} + 3p^{2}q$$

$$(p+q)^{3} - n^{3} = 3p^{2}q$$

$$(p+q-n)\left[(p+q)^{2} + (p+q) \cdot n + n^{2}\right] = 3p^{2}q.$$

The factors of $3p^2q$ are (given p and q are prime),

$$1, 3, p, q, 3p, 3q, p^2, pq, 3p^2, 3pq, p^2q, 3p^2q,$$

and since p + q - n < p and p + q - n < q, it must be either the case that p + q - n = 1 or p + q - n = 3.

• If p + q - n = 1, then p + q = n + 1, we have

$$(p+q)^{2} + (p+q)n + n^{2} = 3p^{2}q$$
$$(n+1)^{2} + (n+1)n + n^{2} = 3p^{2}q$$
$$3n^{2} + 3n + 2 = 3p^{2}q.$$

The left-hand side is congruent to 1 modulo 3, while the right-hand side is a multiple of 3, so this is impossible.

• If p + q - n = 3, p + q = n + 3, we have

$$(p+q)^{2} + (p+q)n + n^{2} = p^{2}q$$

$$(n+3)^{2} + (n+3)n + n^{2} = p^{2}q$$

$$3n^{2} + 9n + 9 = p^{2}q$$

$$3(n^{2} + 3n + 3) = p^{2}q.$$

Therefore, $3 \mid p^2q$, and hence $3 \mid p$ or $3 \mid q$, and hence either p or q must be 3 and the other one is n. However, we have concluded that $p+q-n and <math>p+q-n < q \iff p < n$, which makes this impossible.

This shows that it is impossible for primes p, q and integer n such that $p^3 + q^3 + 3pq^2 = n^3$, which shows that there are no primes p, q such that $p^3 + q^3 + 3pq^2$ is the cube of an integer.

Eason Shao Page 391 of 459