STEP Project Year 2023 Paper 3

2023.3 Question 1

1. The line through P and Q has gradient

$$\frac{aq^2 - ap^2}{2aq - 2ap} = \frac{q^2 - p^2}{2(q - p)} = \frac{p + q}{2},$$

and so it has equation

$$y - ap^{2} = \frac{1}{2}(p+q)(x-2ap)$$
$$y = \frac{1}{2}(p+q)x + ap^{2} - ap^{2} - apq$$
$$y = \frac{1}{2}(p+q)x - apq.$$

The line is tangent to the circle with centre (0,3a) and radius 2a, if and only if its distance from (0,3a) is 2a.

The line has equation

$$2y - (p+q)x + 2apq = 0$$

and hence the distance is

$$d = \frac{|2 \cdot 3a - (p+q) \cdot 0 + 2apq|}{\sqrt{2^2 + (p+q)^2}}$$

$$= \frac{|6a + 2apq|}{\sqrt{4 + p^2q^2 + 6pq + 5}}$$

$$= \frac{|2a(3+pq)|}{\sqrt{(pq+3)^2}}$$

$$= \frac{2a|3+pq|}{|3+pq|}$$

$$= 2a,$$

and so the distance from l to (0,3a) is 2a as desired.

2. We rearrange the condition to an equation in q

$$p^{2} + 2pq + q^{2} = p^{2}q^{2} + 6pq + 5$$
$$(p^{2} - 1)q^{2} + 4pq + (5 - p^{2}) = 0,$$

and since $p^2 \neq 1$, this must be a quadratic.

We examine the discriminant, Δ :

$$\Delta = (4p)^{2} - 4(p^{2} - 1)(5 - p^{2})$$

$$= 16p^{2} - 4(-p^{4} - 5 + 6p^{2})$$

$$= 4p^{4} - 8p^{2} + 20$$

$$= 4(p^{4} - 4p^{2} + 5)$$

$$= 4[(p^{2} - 2)^{2} + 1]$$

$$\geq 4 \cdot 1$$

$$= 4$$

$$> 0,$$

and so $\Delta > 0$, meaning there will be two distinct real values of q satisfying the condition.

By Vieta's Theorem, we have $q_1 + q_2 = -\frac{4p}{p^2 - 1}$, and $q_1 q_2 = \frac{5 - p^2}{p^2 - 1}$.

Eason Shao Page 378 of 459

STEP Project Year 2023 Paper 3

3. Notice that

$$(q_1 + q_2)^2 = \frac{16p^2}{(p^2 - 1)^2},$$

and

$$q_1^2 q_2^2 + 6q_1 q_2 + 5 = \frac{\left(5 - p^2\right)^2}{\left(p^2 - 1\right)^2} + \frac{6 \cdot \left(5 - p^2\right)}{\left(p^2 - 1\right)} + 5$$

$$= \frac{\left(5 - p^2\right)^2 + 6\left(5 - p^2\right)\left(p^2 - 1\right) + 5\left(p^2 - 1\right)^2}{\left(p^2 - 1\right)^2}$$

$$= \frac{25 - 10p^2 + p^4 - 6p^4 + 36p^2 - 30 + 5p^4 - 10p^2 + 5}{\left(p^2 - 1\right)^2}$$

$$= \frac{16p^2}{\left(p^2 - 1\right)^2},$$

and so $(q_1 + q_2)^2 = q_1^2 q_2^2 + 6q_1 q_2 + 5$.

Let $P(2ap, ap^2)$ for some $p \neq 1$, and let the corresponding solutions to the condition be q_1, q_2 . Define the points $Q_1(2aq_1, aq_1^2)$ and $Q_2(2aq_2, aq_2^2)$.

The previous part of the question shows that Q_1 and Q_2 exists and are distinct.

The first part ensures that PQ_1 and PQ_2 are tangents to the circle.

But since q_1 and q_2 satisfies the conditions as well, we must have Q_1Q_2 being a tangent to the circle as well.

Hence, triangle PQ_1Q_2 has all vertices on $x^2 = 4ay$, and that all three sides are tangent to the desired circle.

Eason Shao Page 379 of 459