2021.3 Question 11

1. From the definitions, $X \sim \text{Exp}(\lambda)$, and $Y = \lfloor X \rfloor$. Hence, for $n \ge 0$,

$$P(Y = n) = P(\lfloor X \rfloor = n)$$

= $P(n \le X < n + 1)$
= $\int_{n}^{n+1} f(x) dx$
= $\int_{n}^{n+1} \lambda \cdot e^{-\lambda x} dx$
= $[-e^{-\lambda x}]_{n}^{n+1}$
= $-e^{-\lambda(n+1)} + e^{-\lambda n}$
= $e^{-n\lambda} (1 - e^{-\lambda}),$

as desired.

2. Since Z = X - Y, we know that $Z = \{X\}$ where $\{x\}$ stands for the fractional part of x. Hence, for $0 \le z \le 1$, we have

$$\begin{split} \mathrm{P}(Z < z) &= \mathrm{P}(\{X\} < z) \\ &= \mathrm{P}(X - Y < z) \\ &= \sum_{n=0}^{\infty} \mathrm{P}(X < Y + z, Y = n) \\ &= \sum_{n=0}^{\infty} \mathrm{P}(n \leq X < n + z) \\ &= \sum_{n=0}^{\infty} \int_{n}^{n+z} \lambda \cdot e^{-\lambda x} \, \mathrm{d}x \\ &= \sum_{n=0}^{\infty} \left[-e^{-\lambda x} \right]_{n}^{n+z} \\ &= \sum_{n=0}^{\infty} \left[-e^{-\lambda (n+z)} + e^{-\lambda n} \right] \\ &= \sum_{n=0}^{\infty} e^{-n\lambda} \left(1 - e^{-\lambda z} \right) \\ &= \left(1 - e^{-\lambda z} \right) \sum_{n=0}^{\infty} e^{-n\lambda} \\ &= \left(1 - e^{-\lambda z} \right) \cdot \frac{1}{1 - e^{-\lambda}} \\ &= \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}, \end{split}$$

as desired.

3. It must be the case that $0 \le Z < 1$, and the cumulative distribution function of Z is given by, for $0 \le z \le 1$,

$$F_Z(z) = \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}.$$

By differentiating with respect to z, we get the probability density function of Z is given by, for

 $0\leq z\leq 1,$

$$f_Z(z) = F'_Z(z)$$

= $\frac{\mathrm{d}}{\mathrm{d}z} \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}$
= $\frac{1}{1 - e^{-\lambda}} \cdot (\lambda \cdot e^{-\lambda z})$
= $\frac{\lambda e^{-\lambda z}}{1 - e^{-\lambda}},$

and zero everywhere else.

Hence, the expectation is given by

$$\begin{split} \mathbf{E}(Z) &= \int_0^1 z f_Z(z) \, \mathrm{d}z \\ &= \int_0^1 \frac{\lambda z e^{-\lambda z}}{1 - e^{-\lambda}} \, \mathrm{d}z \\ &= \frac{\lambda}{1 - e^{-\lambda}} \int_0^1 z e^{-\lambda z} \, \mathrm{d}z \\ &= -\frac{1}{1 - e^{-\lambda}} \int_0^1 z \, \mathrm{d}e^{-\lambda z} \\ &= -\frac{1}{1 - e^{-\lambda}} \left[\left(z e^{-\lambda z} \right)_0^1 - \int_0^1 e^{-\lambda z} \, \mathrm{d}z \right] \\ &= -\frac{1}{1 - e^{-\lambda}} \left[z e^{-\lambda z} + \frac{e^{-\lambda z}}{\lambda} \right]_0^1 \\ &= -\frac{1}{1 - e^{-\lambda}} \left[\left(e^{-\lambda} + \frac{e^{-\lambda}}{\lambda} \right) - \left(0 + \frac{1}{\lambda} \right) \right] \\ &= \frac{\frac{1}{\lambda} - \frac{e^{-\lambda}}{\lambda} - e^{-\lambda}}{1 - e^{-\lambda}} \\ &= \frac{1 - e^{-\lambda} - \lambda e^{-\lambda}}{\lambda (1 - e^{-\lambda})}. \end{split}$$

4. Since $0 \le z_1 < z_2 \le 1$, we have $n \le n + z_1 < n + z_2 \le n + 1$, and hence

$$P(Y = n, z_1 < Z < z_2) = P(Y = n, z_1 < X - Y < z_2)$$

= $P(n + z_1 < X < n + z_2)$
= $\int_{n+z_1}^{n+z_2} \lambda \cdot e^{-\lambda x}$
= $[-e^{-\lambda x}]_{n+z_1}^{n+z_2}$
= $e^{-\lambda(n+z_1)} - e^{-\lambda(n+z_2)}$
= $e^{-\lambda n} [e^{-\lambda z_1} - e^{-\lambda z_2}].$

On the other hand, notice

$$\begin{split} \mathbf{P}(Y=n) \, \mathbf{P}(z_1 < Z < z_2) &= \mathbf{P}(Y=n) \left(\mathbf{P}(Z < z_2) - \mathbf{P}(Z - z_1) \right) \\ &= (1 - e^{-\lambda}) e^{-n\lambda} \cdot \left[\frac{1 - e^{-\lambda z_2}}{1 - e^{-\lambda}} - \frac{1 - e^{-\lambda z_1}}{1 - e^{-\lambda}} \right] \\ &= e^{-n\lambda} \left[\left(1 - e^{-\lambda z_2} \right) - \left(1 - e^{-\lambda z_1} \right) \right] \\ &= e^{-n\lambda} \left[e^{-\lambda z_1} - e^{-\lambda z_2} \right]. \end{split}$$

Hence, we have

$$P(Y = n, z_1 < Z < z_2) = P(Y = n) P(z_1 < Z < z_2),$$

and we can conclude that Y and Z are independent.