2020.3 Question 2

1. We differentiate with respect to x on both sides, and we have

$$\cosh x + \cosh y \frac{\mathrm{d}y}{\mathrm{d}x} = 0.$$

If the curve has a stationary point (x, y), we must have $\frac{dy}{dx} = 0$ at that point, and hence

$$\cosh x = 0.$$

This is impossible since the cosh function has a range of $[1, +\infty)$, and hence C has no stationary points. (In fact we must have $\frac{dy}{dx} < 0$.)

Differentiating this with respect to x again gives

$$\sinh x + \sinh y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + \cosh y \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0.$$

At point (x, y), $\frac{d^2y}{dx^2} = 0$ if and only if

$$\sinh x + \sinh y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 0.$$

From the previous differentiation, we know that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\cosh x}{\cosh y}$$

and hence

$$\sinh x + \sinh y \cdot \frac{\cosh^2 x}{\cosh^2 y} = 0,$$

which gives

$$\cosh^2 y \sinh x + \sinh y \cosh^2 x = 0.$$

Using the identity $\cosh^2 t = 1 + \sinh^2 t$, we have

$$\sinh x + \sinh^2 y \sinh x + \sinh y + \sinh^2 x \sinh y = 0,$$

and hence

$$(\sinh x + \sinh y)(1 + \sinh x \sinh y) = 0.$$

Since $\sinh x + \sinh y = 2k$ and k is positive, we can conclude that

$$1 + \sinh x \sinh y = 0,$$

as desired.

The only-if direction is identical since all steps above are reversible. For a point of inflection, we must first have $\frac{d^y x}{d=y} 0$, and hence

$$\sinh x \sinh y = -1$$
, $\sinh x + \sinh y = 2k$.

This means that $\sinh x$ and $\sinh y$ are roots to the quadratic equation in t

$$t^2 - 2kt - 1 = 0.$$

This equation solves to

$$t_{1,2} = \frac{2k \pm \sqrt{4k^2 + 4}}{2} = k \pm \sqrt{k^2 + 1}.$$

Therefore, the points where the second derivative is zero on the curve are

$$\left(\operatorname{arsinh}\left(k\pm\sqrt{k^2+1}\right),\operatorname{arsinh}\left(k\mp\sqrt{k^2+1}\right)\right).$$

2. If x + y = a and $\sinh x + \sinh y = 2k$, we must have y = a - x, and hence

$$\frac{e^x - e^{-x}}{2} + \frac{e^{a-x} - e^{x-a}}{2} = 2k$$
$$e^{2x} - 1 + e^a - e^{2x-a} = 4ke^x$$
$$e^{2x}(1 - e^{-a}) - 4ke^x + (e^a - 1) = 0,$$

as desired.

Since e^x is always real, we must have

$$(-4k)^2 - 4(1 - e^{-a})(e^a - 1) = 16k^2 - 4(e^a - 1 - 1 + e^{-a})$$

= 16k² - 4(2 cosh a - 2)
= 16k² + 8 - 8 cosh a
\ge 0,

and hence

$$\cosh a \le 2k^2 + 1.$$

As for the left-hand side inequality, we already know $\cosh a \ge 1$. $\cosh a = 1$ if and only if a = x + y = 0, in which case

$$\sinh x + \sinh y = \sinh x + \sinh(-x) = 0 \neq 2k,$$

since 2k > 0.

Hence, we must have

 $1 < \cosh a \le 2k^2 + 1,$

as desired.

3. Notice that when $\cosh a = 2k^2 + 1$, there is precisely one root to the quadratic equation, which means x = y. Hence,

$$2k^{2} + 1 = \cosh a$$

= $\cosh(x + y)$
= $\cosh x \cosh y + \sinh x \sinh y$
= $\cosh^{2} x + \sinh^{2} x$
= $1 + 2 \sinh^{2} x$,

which shows that (since $\sinh x + \sinh y = k$)

$$\sinh x = \sinh y = k$$

The graph meets the axis at $(0, \operatorname{arsinh}(2k))$ and $(\operatorname{arsinh}(2k), 0)$. Hence, the graph must look as follows:

