2019.3 Question 4

- 1. We look at different cases depending on the value of n.
 - When n = 1, $P(x) = x a_1$ has root a_1 , and thus is reflective for all $a_1 \in \mathbb{R}$.
 - When n = 2, $P(x) = x^2 a_1x + a_2$ has root a_1, a_2 , and hence by Vieta's Theorem,

$$a_1a_2 = a_2, a_1 + a_2 = a_1.$$

This means $a_2 = 0$ and a_1 can take any real value, and hence

$$P(x) = x^2 - a_1 x$$

is reflective for $a_1 \in \mathbb{R}$.

• When n = 3, $P(x) = x^3 - a_1x^2 + a_2x - a_3$ has root a_1, a_2, a_3 , and hence by Vieta's Theorem,

$$\begin{cases} a_1 a_2 a_3 = a_3, \\ a_1 a_2 + a_1 a_3 + a_2 a_3 = a_2, \\ a_1 + a_2 + a_3 = a_1. \end{cases}$$

The final equation implies that $a_2 + a_3 = 0$, and hence with the second equation gives that $a_2a_3 = a_2$, which means either $a_2 = a_3 = 0$, or $a_2 = -1$, $a_3 = 1$. When $a_2 = a_3 = 0$, a_1 can take any real value, and when $a_2 = -1$, $a_3 = 1$, we must have

When $a_2 = a_3 = 0$, a_1 can take any real value, and when $a_2 = -1$, $a_3 = 1$, we must have $a_1 = -1$.

So the degree 3 reflective polynomials are

$$P(x) = x^3 - a_1 x^2$$

for all $a_1 \in \mathbb{R}$, and

$$P(x) = x^3 + x^2 - x - 1.$$

2. By Vieta's Theorem, we have

$$\sum_{i=1}^{n} a_i = a_1,$$

and hence

$$\sum_{i=2}^{n} a_i = 0.$$

Squaring both sides gives

$$0 = \left(\sum_{i=2}^{n} a_i\right)^2$$

= $\sum_{i=2}^{n} a_i^2 + 2 \sum_{i=2}^{n-1} \sum_{j=i+1}^{n} a_i a_j.$

By Vieta's Theorem, we also have

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_i a_j = a_2,$$

and notice that

$$2a_{2} = 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}a_{i}a_{j}$$

= $2\sum_{j=2}^{n}a_{1}a_{j} + 2\sum_{i=2}^{n-1}\sum_{j=i+1}^{n}a_{i}a_{j}$
= $2a_{1}\sum_{i=2}^{n}a_{i} + \left(-\sum_{i=2}^{n}a_{i}^{2}\right)$
= $2a_{1} \cdot 0 - \sum_{i=2}^{n}a_{i}^{2}$
= $-\sum_{i=2}^{n}a_{i}^{2}$,

as desired.

For the final part, assume B.W.O.C. that n > 3. By rearrangement, we have

$$a_2^2 + 2a_2 + 1 = 1 - \sum_{i=3}^n a_i^2,$$

and the left-hand side is $(a_2 + 1)^2$ which is always non-negative. Hence,

$$\sum_{i=3}^{n} a_i^2 \le 1.$$

Since a_i are all integers, precisely one of the a_i s for $3 \le i \le n$ is ± 1 , and all the rest are 0. Since $a_n \ne 0$, we conclude that $a_n = \pm 1$, and $a_3 = \cdots = a_{n-1} = 0$.

But notice from Vieta's Theorem that

$$a_n = \prod_{i=1}^n a_i = 0$$

since a_3 must be 0, which leads to a contradiction.

Hence, we must have $n \leq 3$.

- 3. The reflective polynomials for $n \leq 3$ are
 - $P(x) = x a_1$ for $a_1 \in \mathbb{Z}$,
 - $P(x) = x^2 a_1 x$ for $a_1 \in \mathbb{Z}$,
 - $P(x) = x^3 a_1 x^2$ for $a_1 \in \mathbb{Z}$, and
 - $P(x) = x^3 + x^2 x 1$.

For n > 3, we must have $a_n = 0$, and hence

$$P(x) = x^{n} - a_{1}x^{n-1} + a_{2}x^{n-2} - \dots + (-1)^{n-1}a_{n-1}x$$

= $x \left(x^{n-1} - a_{2}x^{n-2} + a_{2}x^{n-3} - \dots + (-1)^{n-1}a_{n-1}\right).$

Let

$$Q(x) = x^{n-1} - a_2 x^{n-2} + a_2 x^{n-3} - \dots + (-1)^{n-1} a_{n-1}$$

If P(x) is reflective, then the roots to P(x) are $a_1, a_2, \ldots, a_{n-1}, 0$, and hence the roots to Q(x) are $a_1, a_2, \ldots, a_{n-1}$, which shows that Q(x) is reflective as well.

This means that an integer-coefficient reflective polynomial with degree n > 3 must be x multiplied by another integer-coefficient reflective polynomial, and repeating this process, we can conclude it must be some power of x multiplied by some integer-coefficient reflective polynomial with degree $n \leq 3$.

Hence, all integer-coefficient reflective polynomials are

- $P(x) = x^r(x a_1)$ for $a_1 \in \mathbb{Z}, r \in \mathbb{Z}, r \ge 0$, and
- $P(x) = x^r(x^3 + x^2 x 1) = x^2(x+1)^2(x-1)$ for $r \in \mathbb{Z}, r \ge 0$.