STEP Project Year 2019 Paper 3

2019.3 Question 2
1. Let y = 0, and we have
f(x+0) = f(z) = f()£(0),
so either f(z) =0 or f(0) =1 for all .

Assume, B.W.O.C., that f(0) # 1, then we must have f(z) = 0 for all x, which means f'(z) =0,
contradicting with f'(0) =k # 0.

Hence, f(0) = 1.

By definition of the derivative, we have
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and letting = = 0, we also have
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and hence
f(x) =kf(x)
as desired.
This differential equation solves to
f(x) = Ae*?,
and with the condition f(0) = 1, we have A =1, and hence
fla) = et
for all x.
2. Let y = 0, and we have
9(z) +9(0)

g(x+0) =g(z) = T+ g(2)g(0)’

This means that
g(@) + g(2)*9(0) = g(z) + g(0),
which gives
9(0) [9(x)* — 1] = 0.

Since |g(z)| < 1 for all , we must have g(x)? — 1 < 0, and hence g(0) = 0.
By the definition of the derivative,
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Considering the limit, we have
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and hence

Let x = 0, and we have

hence giving the differential equation
g'(@) =k [l —g(x)’].

This rearranges to give

dg(z)
1—g(x)? e
and hence
1 1
dg(z) = 2k dx,

_l’_
L+g(z)  1-g(x)
which gives
In|1 4 g(x)| —In|1 — g(x)| = 2kx + C.

Let x = 0, we have ¢g(0) = 0, and hence C = 0, and hence

1+ g(x)

() = exp(2kx),

and hence
1+ g(z) = exp(2kz) — exp(2kz)g(z),

which gives
exp(2kz) —1  exp(kx) — exp(—kx)
exp(2kz) +1  exp(kz) + exp(—kx)

g9(x) = = tanh(kz).
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