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2018.3 Question 7

1. We have

(cot θ + i)2n+1 − (cot θ − i)2n+1

2i

=
(cos θ + i sin θ)

2n+1 − (cos θ − i sin θ)2n+1

2i sin2n+1 θ

=
(cos(2n+ 1)θ + i sin(2n+ 1)θ)− (cos(2n+ 1)θ − i sin(2n+ 1)θ)

2i sin2n+1 θ

=
2i sin(2n+ 1)θ

2i sin2n+1 θ

=
sin(2n+ 1)θ

sin2n+1 θ
,

as desired.

By applying the binomial expansion formula on the numerator, we have

(cot θ + i)2n+1 − (cot θ − i)2n+1

=

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i2n+1−t −

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · (−i)2n+1−t

=

2n+1∑
t=0

(
2n+ 1

t

)
cott θ ·

[
i2n+1−t − (−i)2n+1−t

]
= (−1)n · i ·

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i−t ·

[
1− (−1)1−t

]
.

Due to the existence of the final term, this means that only terms with even t will retain (give a
2), and odd ts will cancel. Hence,

(cot θ + i)2n+1 − (cot θ − i)2n+1

= (−1)n · i ·
2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i−t ·

[
1− (−1)1−t

]
= (−1)n · 2i ·

n∑
t=0

(
2n+ 1

2t

)
cot2t θ · i−2t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2t

)
cot2t θ · (−1)t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2n− 2t+ 1

)
cot2t θ · (−1)t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)n−t

= 2i ·
n∑

t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)t.

Hence,

sin(2n+ 1)θ

sin2n+1 θ

=
2i ·
∑n

t=0

(
2n+1
2t+1

)
cot2(n−t) θ · (−1)t

2i

=

n∑
t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)t.
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The left-hand side of the original equation is

n∑
t=0

(
2n+ 1

2t+ 1

)
xn−t · (−1)t.

Let x = cot2 θ, we have

sin(2n+ 1)θ

sin2n+1 θ
=

n∑
t=0

(
2n+ 1

2t+ 1

)
xn−t · (−1)t = 0.

Therefore, we have sin(2n+ 1)θ = 0, and hence (2n+ 1)θ = mπ for m ∈ Z.
To avoid duplicate solutions for x = cot2 θ, we restrict θ ∈

(
0, π

2

]
, and hence (2n + 1)θ ∈(

0,
(
n+ 1

2

)
π
]
, and hence m = 1, 2, . . . , n.

This solves to θ = mπ
2n+1 for m = 1, 2, . . . , n, and hence this gives exactly

x = cot2
(

mπ

2n+ 1

)
.

2. By Vieta’s Theorem, we will have

n∑
m=1

xm = −
−
(
2n+1

3

)(
2n+1

1

) =
(2n+ 1)(2n)(2n− 1)

(2n+ 1) · 3 · 2 · 1
=

n(2n− 1)

3
,

and since we have

xm = cot2
(

mπ

2n+ 1

)
,

we have
n∑

m=1

cot2
(

mπ

2n+ 1

)
=

n(2n− 1)

3
.

3. For 0 < θ < 1
2π, we have 0 < sin θ < θ < tan θ, and squaring this gives

0 < sin2 θ < θ2 < tan2 θ,

and flipping to the reciprocal gives

0 < cot2 θ <
1

θ2
< csc2 θ = 1 + cot2 θ,

which proves exactly what is desired.

Therefore, we have

n∑
m=1

cot2
(

mπ

2n+ 1

)
<

n∑
m=1

1(
mπ

2n+1

)2 <

n∑
m=1

[
1 + cot2

(
mπ

2n+ 1

)]
,

and hence
n(2n− 1)

3
<

n∑
m=1

(2n+ 1)2

m2π2
<

2n(n+ 1)

3
,

and hence
n(2n− 1)π2

3(2n+ 1)2
<

n∑
m=1

1

m2
<

2n(n+ 1)π2

3(2n+ 1)2
.

Take the limit as n → ∞, the strict inequalities become weak, and hence

lim
n→∞

n(2n− 1)π2

3(2n+ 1)2
≤

∞∑
m=1

1

m2
≤ lim

n→∞

2n(n+ 1)π2

3(2n+ 1)2
,
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and hence
2π2

3 · 22
≤

∞∑
m=1

1

m2
≤ 2nπ2

3 · 22
,

and therefore
π2

6
≤

∞∑
m=1

1

m2
≤ π2

6
,

and hence
∞∑

m=1

1

m2
=

π2

6
,

as desired.
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