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2018.3 Question 7

1. We have
(cot @ + )2+t — (cot § — i)2n+!
2
(cos @ + isin0)*" T — (cos — isin §)2nH1
B 2isin*" ™ 0
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a 2isin®" ¢
~ 2isin(2n +1)0
~ 2isin®" g
_ sin(2n +1)0
~ sin®tlg
as desired.

By applying the binomial expansion formula on the numerator, we have
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Due to the existence of the final term, this means that only terms with even ¢ will retain (give a
2), and odd ¢s will cancel. Hence,
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Hence,
sin(2n 4+ 1)0
sin?"*1 g

_ 2310, (2;;111) cot?=1 g . (1)t
2i

= <2n * 1) cot?™=t 9. (1)
t=0
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The left-hand side of the original equation is
"\ 2n+1
Z (272 +1>$n_t . (_1)1‘,_
t=0 +
Let z = cot?f, we have

_ n—t -1 t:O.
2+l g 2t+1>x (1)

sin(2n +1)0 = (2n+1
Sin P

Therefore, we have sin(2n + 1)8 = 0, and hence (2n 4 1)0 = mx for m € Z.

To avoid duplicate solutions for z = cot?6, we restrict 6 € (0, %], and hence (2n + 1)0 €
(O,(n—i—%)?r], and hence m =1,2,...,n.

This solves to 0 = for m =1,2,...,n, and hence this gives exactly

x = cot? mr .
2n+1

2n+1

2. By Vieta’s Theorem, we will have

" =YY @nenEn)@n—1)  n(2n—1)
ZI’"__(%Fl) - (@2n+1)-3-2.1 3 7

m=1

and since we have

we have

3. For 0 <6 < %w, we have 0 < sinf < 0 < tan#, and squaring this gives
0 < sin?6 < 62 < tan? 6,

and flipping to the reciprocal gives

1
0<cot29<0—2<csc 0 =1+ cot?#,

which proves exactly what is desired.

Therefore, we have

n n
1
E cot? < — < 1 4 cot? mr ,
2n +1 z l(mﬁ> ‘ 2n + 1

=\ 2n+1 m=
and hence
2n—1) &K @2n+1)2  2n(n+1)
3 < mZ:1 m2m2 3 ’
and hence

n(2n — 1)72 "1 2n(n + 1)

32n+ 17 2 m? " 3En+ 12

Take the limit as n — oo, the strict inequalities become weak, and hence

2n — )7 1 2 172
lim (n § 7§ imM
n—oo 3(2n+1)2 T L= m2 T nooo 3(2n + 1)2
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and hence

and therefore

and hence

as desired.

o2 <1 2nm?
< — <
2 > 1 2
7<§ =<
6 _m:1m2 - 6’
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