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2018.2 Question 1

First, notice that x = 0 must not be a root to this quartic equation. Therefore, we can divide both sides
by x2, and the original equation is equivalent to

x2 +
1

x2
+ a

(
x+

1

x

)
+ b = 0,

and this rearranges to (
x+

1

x

)2

+ a

(
x+

1

x

)
+ (b− 2) = 0.

Notice that

k +
1

k
=

1

k−1
+ k−1 = k−1 +

1

k−1
,

so if x = k satisfies this equation, then x = k−1 also satisfies this equation.
Notice that the range of t = x+ 1

x for non-zero real x is t ∈ (−∞,−2] ∪ [2,∞).
Since it is given that all the roots are real, it must be the case that the quadratic equation

t2 + at+ (b− 2) = 0

produces two real roots situated within (−∞,−2] ∪ [2,∞).
Notice that for t ∈ (−∞,−2] ∪ [2,∞), the equation

x+
1

x
= t

has precisely two real roots for t ̸= ±2, and precisely one x = ±1 for t = ±2.

1. In this case, by the previous analysis, the only possibility is that x1 = x2 = x3 = x4 = ∓1. This
means that

x4 + ax3 + bx2 + ax+ 1 = (x± 1)4 = x4 ± 4x3 + 6x2 ± 4x+ 1,

and hence (a, b) = (±4, 6).

2. Since there are exactly three distinct roots for x, this means that the one which repeated must be
x1 = x2 = ±1, which leads to t1 = ±2, and those two which does not leads to t2 ̸= ±2.

Putting t1 = ±2 into the quadratic equation in t, we have

4± 2a+ (b− 2) = 0,

and hence
b = ∓2a− 2,

precisely as desired.

3. When b = 2a− 2, we have
t2 + at+ (2a− 4) = 0,

which solves to t1 = −2, t2 = −a+ 2.

For x+ 1
x = t1 = −2, this solves to x1 = x2 = −1.

For x+ 1
x = t2 = −a+ 2, this rearranges to

x2 + (a− 2)x+ 1 = 0,

and hence the two roots are

x3,4 =
−(a− 2)±

√
(a− 2)2 − 4

2
=

−a+ 2±
√
a2 − 4a

2
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4. We first look at necessary condition. Given the equation has precisely two roots, we have b =
±2a− 2, and hence the quadratic equation in t becomes

t2 + at+ (±2a− 4) = 0.

t1 = ∓2 must be a root, and notice that this factorises to

t2 + at+ (±2a− 4) = (t± 2)(t− (−a± 2)),

and hence the other root is t2 = −a± 2.

As discussed before, we must have that t2 < −2 or t2 > 2 to produce two distinct roots for x, and
hence

−a± 2 < −2 or − a± 2 > 2,

and hence
a∓ 2 > 2 or a∓ 2 < −2,

and hence
a > 2± 2 or a < −2± 2.

Therefore, a necessary condition is b = ±2a− 2, and a ∈ (−∞,−2± 2) ∪ (2± 2,∞).

We would like to show that this is a sufficient condition as well. If b = ±2a − 2 and a ∈
(−∞,−2± 2) ∪ (2± 2,∞), we have the quadratic in t simplifies to

t2 + at+ (±2a− 4) = (t± 2)(t− (−a± 2)) = 0.

This gives roots t1 = ∓2 which in turn gives x1 = x2 = ∓1, and t2 = −a± 2. In the second case,
since

a ∈ (−∞,−2± 2) ∪ (2± 2,∞) ,

we must have
a∓ 2 ∈ (−∞,−2) ∪ (2,∞)

and hence
−a± 2 ∈ (−∞,−2) ∪ (2,∞) .

This shows that there are two distinct xs corresponding to t2, both of which are not equal to ±1.

Hence, in this case, the original equation has 3 distinct roots precisely, and

b = ±2a− 2, a ∈ (−∞,−2± 2) ∪ (2± 2,∞)

is a necessary and sufficient condition for the original equation to have precisely 3 distinct real
roots.

The following is to simplify this to what is written in the mark scheme. b = ±2a− 2 is equivalent
to b+ 2 = ±2a, and (b+ 2)2 = 4a2.

The second part is equivalent to a∓ 2 ∈ (−∞,−2) ∪ (2,∞), i.e.

(a∓ 2)2 = a2 ∓ 4a+ 4 > 4,

i.e.
a2 > ±4a = 2± 2a = 2(b+ 2) = 2b+ 4,

precisely what is in the mark scheme.
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