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2017.3 Question 7
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as desired, so T lies on the ellipse x2

a2 + y2

b2 = 1.

1. The gradient of L must satisfy that
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Therefore, we have a general point (X,Y ) ∈ L satisfy that
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as desired.

Now if we fix X,Y and solve for t, there are two solutions to this quadratic equation exactly when

(2aY )2 − 4(a+X)b · b(a−X) > 0

(aY )2 − (a+X)(a−X)b2 > 0

a2Y 2 > (a2 −X2)b2,

which corresponds to two distinct points on the ellipse.
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Since a2Y 2 > (a2 −X2)b2, we have Y 2

b2 > 1− X2

a2 by dividing through a2b2 on both sides, i.e.

X2

a2
+

Y 2

b2
> 1,

which means when the point (X,Y ) lies outside the ellipse.

This also holds when X2 = a2, i.e. when the point (X,Y ) lies on the pair of lines X = ±A. Here,
the condition is simply a2Y 2 > 0, which gives Y ̸= 0. One of the tangents will be the vertical line
X = ±A (whichever one the point lies on), and the other one as a non-vertical (as shown when
X = a, the tangents being L1 and L2).

x

y
x = a, L2x = −a

(X,Y )

L1

2. By Vieta’s Theorem, we have
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as desired, and
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Let X = 0 for the equation in L,

abt2 − 2aY t+ ba = 0

bt2 − 2Y t+ b = 0
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Therefore,
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therefore we have
4pq = (1 + p2)q + (1 + q2)p = (p+ q)(1 + pq).
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Therefore,
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as desired.
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