2017.2 Question 3

1. Since $\sin y = \sin x$, we must have

where $k \in \mathbb{Z}$, or

$$y = (2k+1)\pi - x$$

 $y=x+2k\pi$

where $k \in \mathbb{Z}$.

For the first case, since $x \in [-\pi, \pi]$ and $y \in [-\pi, \pi]$, we must have simply x = y. For the second case, within this range, we can have $y = \pi - x$, and $y = -\pi - x$. Hence, the sketch looks as follows.

2. Differentiating with respect to x, we have

$$\cos y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\cos x.$$

Since $\sin y = \frac{1}{2} \sin x$, $\cos y = \pm \sqrt{1 - \sin^2 y} = \pm \sqrt{1 - \frac{1}{4} \sin^2 x}$. Since $0 \le y \le \frac{1}{2}\pi$, $\cos y > 0$, and hence $\cos y = \frac{1}{2}\sqrt{4 - \sin^2 x}$. Hence,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}\cos x}{\frac{1}{2}\sqrt{4 - \sin^2 x}} = \frac{\cos x}{\sqrt{4 - \sin^2 x}}.$$

Differentiating this again gives us

$$\begin{aligned} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} &= \frac{(-\sin x)\sqrt{4 - \sin^2 x} - \frac{1}{2} \cdot (-2\sin x) \cdot \cos x \cdot \frac{1}{\sqrt{4 - \sin^2 x}} \cdot \cos x}{4 - \sin^2 x} \\ &= \frac{(-\sin x)(4 - \sin^2 x) + \sin x \cos^2 x}{(4 - \sin^2 x)^{\frac{3}{2}}} \\ &= \frac{-4\sin x + \sin^3 x + \sin x(1 - \sin^2 x)}{(4 - \sin^2 x)^{\frac{3}{2}}} \\ &= -\frac{3\sin x}{(4 - \sin^2 x)^{\frac{3}{2}}}, \end{aligned}$$

as desired.

Within this range of x and y, we have

$$y = \arcsin\left(\frac{1}{2}\sin x\right),$$

and hence this is a function, and each x corresponds to a unique y. At x = 0,

$$y = 0, y' = \frac{\cos 0}{\sqrt{4 - \sin^2 0}} = \frac{1}{2},$$

and at $x = \frac{\pi}{2}$,

$$y = \frac{\pi}{6}, y' = -\frac{\cos\frac{\pi}{2}}{\sqrt{4 - \sin^2\frac{\pi}{2}}} = 0.$$

Since $y'' = -\frac{3 \sin x}{(4-\sin^2 x)^{\frac{3}{2}}} < 0$ for $x \in [0, \frac{\pi}{2}]$, this function is concave, and hence the graph looks as follows.

Hence, for $(x,y) \in [-\pi,\pi]^2$, the graph looks as follows, by symmetry.

3. The graph is as follows.

