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2017.2 Question 13

1. For each try, there is a probability of 1
n of getting the correct key, and 1 − 1

n otherwise. Let X1

denote the number of attempts to open the door, we can see that X1 ∼ Geo
(
1
n

)
, and hence using

the formula for a geometric distribution,

E(X1) = n.

The way to consider the binomial expansion is as follows. First, note the probability mass function
of X1 is

P(X1 = x) =

(
1− 1

n

)x−1

· 1
n
,

and hence the expectation is given by

E(X1) =

∞∑
x=1

xP(X1 = x)

=

∞∑
x=1

x ·
(
1− 1

n

)x−1

· 1
n

=
1

n
·

∞∑
x=1

x ·
(
1− 1

n

)x−1

.

Consider the binomial expansion of (1− q)−2. We have

(1− q)−2 =

∞∑
t=0

(−q)t ·
∏t

r=1(−2 + 1− t)

t!

=

∞∑
t=0

(−1)tqt(−1)t
∏t

r=1(1 + t)

t!

=

∞∑
t=0

qt(t+ 1)!

t!

=

∞∑
t=0

(t+ 1)qt.

Let q = 1− 1
n . We can see

E(X1) =
1

n
·

∞∑
x=1

x ·
(
1− 1

n

)x−1

=
1

n
·

∞∑
x=0

(x+ 1) · qx

=
1

n
· (1− q)−2

=
1

n
·
(
1

n

)−2

= n,

precisely what we had before.

2. Let X2 be the number of attempts to open the door in this case. Considering the probability mass
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function of X2, we have for x = 1, 2, . . . , n, that

P(X2 = x) =
n− 1

n
· n− 2

n− 1
· · · n− (x− 2)− 1

n− (x− 2)
· 1

n− (x− 1)

=
(n− 1)!/(n− x)!

n!/(n− x)!

=
(n− 1)!

n!

=
1

n
.

This shows that X2 follows a discrete uniform distribution on {1, 2, . . . , n}, i.e., X2 ∼ U(n).

Hence, E(X2) =
n+1
2 .

3. Let X3 be the number of attempts to open the door in this case. Considering the probability mass
function of X2, we have for x = 1, 2, . . ., that

P(X3 = x) =
n− 1

n
· n

n+ 1
· · · n+ x− 3

n+ x− 2
· 1

n+ x− 1

=
(n+ x− 3)!/(n− 2)!

(n+ x− 1)!/(n− 1)!

=
(n+ x− 3)!(n− 1)!

(n+ x− 1)!(n− 2)!

=
n− 1

(n+ x− 1)(n+ x− 2)
,

which is precisely what is desired.

By partial fractions, we have

P(X3 = x) = (n− 1) ·
(

2

n+ x− 2
− 1

n+ x− 1

)
,

and hence the expected number of attempts is

E(X3) =

∞∑
x=1

(n− 1) · x ·
(

1

n+ x− 2
− 1

n+ x− 1

)

= (n− 1)

∞∑
x=1

x

(
1

n+ x− 2
− 1

n+ x− 1

)
.

We consider the partial sum of this infinite sum op to x = t, and

t∑
x=1

x

(
1

n+ x− 2
− 1

n+ x− 1

)
=

t∑
x=1

x

n+ x− 2
−

t∑
x=1

x

n+ x− 1

=

t−1∑
x=0

x+ 1

n+ x− 1
−

t∑
x=1

x

n+ x− 1

=
1

n− 1
+

t−1∑
x=1

1

n+ x− 1
− t

n+ t− 1

=

t−1∑
x=0

1

n+ x− 1
− t

n+ t− 1

=

n+t−2∑
x=n−1

1

x
− t

n+ t− 1
.
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Hence, we have

E(X3) = (n− 1)

∞∑
x=1

x

(
1

n+ x− 2
− 1

n+ x− 1

)

= (n− 1) lim
t→∞

(
n+t−2∑
x=n−1

1

x
− t

n+ t− 1

)

= (n− 1) lim
t→∞

(
n+t−2∑
x=1

1

x
−

n−2∑
x=1

1

x
− t

n+ t− 1

)

= (n− 1)

( ∞∑
x=1

1

x
−

n−2∑
x=1

1

x
− 1

)

does not converge since the first term (harmonic sum) diverges, and the rest of the terms are finite.
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