2016.3 Question 6

• In the case where B > A > 0 or -B < -A < 0, notice that

 $R\cosh(x+\gamma) = R\cosh x \cosh \gamma + R\sinh x \sinh \gamma.$

Therefore, we would like $R \sinh \gamma = A$ and $R \cosh \gamma = B$.

Since $\cosh \gamma^2 - \sinh \gamma^2 = 1$, we have $R^2 = B^2 - A^2$.

We also have $\tanh \gamma = \frac{A}{B}$, and therefore $\gamma = \operatorname{artanh} \frac{A}{B}$.

Notice that $\cosh \gamma > 0$, so R must have the same sign as B.

- If B > A > 0, $R = \sqrt{B^2 A^2}$. - If B < -A < 0, $R = -\sqrt{B^2 - A^2}$.
- In the case where -A < B < A, notice that

 $R\sinh(x+\gamma) = R\sinh\gamma\cosh x + R\cosh\gamma\sinh x.$

Therefore, we would like $R \cosh \gamma = A$ and $R \sinh \gamma = B$. Since $\cosh \gamma^2 - \sinh \gamma^2 = 1$, we have $R^2 = B^2 - A^2$. We also have $\tanh \gamma = \frac{B}{A}$, and therefore $\gamma = \operatorname{artanh} \frac{B}{A}$. Notice that $\cosh \gamma > 0$, so R will have the same sign as A, and hence $R = \sqrt{A^2 - B^2}$.

• When B = A, we have

$$A \sinh x + B \cosh x = A \frac{e^x - e^{-x}}{2} + A \frac{e^x + e^{-x}}{2}$$

= Ae^x .

• When B = -A, we have

$$A \sinh x + B \cosh x = A \frac{e^x - e^{-x}}{2} - A \frac{e^x + e^{-x}}{2}$$

= $A e^{-x}$.

Therefore, in conclusion,

$$A \sinh x + B \cosh x = \begin{cases} \sqrt{B^2 - A^2} \cosh \left(x + \operatorname{artanh} \frac{A}{B}\right), & 0 < A < B, \\ Ae^x, & 0 < B = A, \\ \sqrt{A^2 - B^2} \sinh \left(x + \operatorname{artanh} \frac{B}{A}\right), & -A < B < A, \\ -Ae^{-x}, & B = -A < 0, \\ -\sqrt{B^2 - A^2} \cosh \left(x + \operatorname{artanh} \frac{A}{B}\right), & -B < -A < 0. \end{cases}$$

1. We have sech $x = a \tanh x + b$, and hence $1 = a \sinh x + b \cosh x$. If b > a > 0, we have

$$\sqrt{b^2 - a^2} \cosh\left(x + \operatorname{artanh} \frac{a}{b}\right) = 1.$$

Therefore,

$$\cosh\left(x + \operatorname{artanh} \frac{a}{b}\right) = \frac{1}{\sqrt{b^2 - a^2}}$$
$$x + \operatorname{artanh} \frac{a}{b} = \pm \operatorname{arcosh} \frac{1}{\sqrt{b^2 - a^2}}$$
$$x = \pm \operatorname{arcosh} \frac{1}{\sqrt{b^2 - a^2}} - \operatorname{artanh} \frac{a}{b},$$

as desired.

2. When a > b > 0,

$$\sqrt{a^2 - b^2} \sinh\left(x + \operatorname{artanh} \frac{b}{a}\right) = 1.$$

Therefore,

$$\sinh\left(x + \operatorname{artanh} \frac{b}{a}\right) = \frac{1}{\sqrt{a^2 - b^2}}$$
$$x + \operatorname{artanh} \frac{b}{a} = \operatorname{arsinh} \frac{1}{\sqrt{a^2 - b^2}}$$
$$x = \operatorname{arsinh} \frac{1}{\sqrt{a^2 - b^2}} - \operatorname{artanh} \frac{b}{a}.$$

- 3. We would like to have two solutions to the equation $1 = a \sinh x + b \cosh x$.
 - 0 < a < b, this gives

$$x = \pm \operatorname{arcosh} \frac{1}{\sqrt{b^2 - a^2}} - \operatorname{artanh} \frac{a}{b},$$

For this to make sense, we must have $\frac{1}{\sqrt{b^2-a^2}} \ge 1$, and therefore $0 < \sqrt{b^2 - a^2} \le 1$, which is $0 < b^2 - a^2 \le 1$.

For this to have two distinct points, we would like to have $\operatorname{arcosh} \frac{1}{\sqrt{b^2 - a^2}} \neq 0$ as well. This means $b^2 - a^2 \neq 1$.

Therefore, in this case, this means that $a < b < \sqrt{a^2 + 1}$.

- b = a, this gives $ae^x = 1$, which gives a unique solution $x = -\ln a$.
- -a < b < a, this gives

$$\sqrt{A^2 - B^2} \sinh\left(x + \operatorname{artanh} \frac{B}{A}\right) = 1,$$

which can only give the solution $x = \operatorname{arsinh} \frac{1}{\sqrt{A^2 - B^2}} - \operatorname{artanh} \frac{B}{A}$.

- b = -a, this gives $-ae^{-x} = 1$, which does not have a solution.
- -b < -a < 0, this gives

$$-\sqrt{b^2 - a^2} \cosh\left(x + \operatorname{artanh} \frac{a}{b}\right) = 1,$$

but this is impossible, since both square root and cosh are always positive.

Therefore, the only possibility is when $a < b < \sqrt{a^2 + 1}$.

4. When they touch at a point, this will mean at this value, the number of solutions will change on both sides. This is only possible when $b = \sqrt{a^2 + 1}$.

Therefore,

$$x = -\operatorname{artanh} \frac{a}{\sqrt{a^2 + 1}}.$$

Hence,

$$y = a \tanh x + b$$

= $-a \cdot \frac{a}{\sqrt{a^2 + 1}} + \sqrt{a^2 + 1}$
= $\frac{-a^2 + a^2 + 1}{\sqrt{a^2 + 1}}$
= $\frac{1}{\sqrt{a^2 + 1}}$.