2016.3 Question 12

1. Let $X \sim B(100n, 0.2)$. We have $\mu = 100n \cdot 0.2 = 20n$, and $\sigma^2 = 100n \cdot 0.2 \cdot 0.8 = 16n$. We have that

$$\begin{split} \alpha &= \mathrm{P}(16n \le X \le 24n) \\ &= \mathrm{P}(|(X - 20n)| \le 4n) \\ &= \mathrm{P}(|(X - \mu)| \le \sigma\sqrt{n}) \\ &= 1 - \mathrm{P}(|(X - \mu)| > \sigma\sqrt{n}) \\ &\ge 1 - \frac{1}{\sqrt{n^2}} \\ &= 1 - \frac{1}{n}, \end{split}$$

as desired, where we applied the Chebyshev Inequality for $k = \sqrt{n} > 0$.

2. Let $X \sim Po(n)$. Therefore, $\mu = E(X) = n$, $\sigma = \sqrt{Var(X)} = \sqrt{n}$. To show the desired inequality is equivalent to showing that

$$\frac{1+n+\frac{n^2}{2!}+\cdot+\frac{n^{2n}}{(2n!)}}{e^n} \ge 1-\frac{1}{n}$$

Notice that the left-hand side is simply $P(0 \le X \le 2n)$. By the Chebyshev Inequality, we have

LHS = P(0
$$\leq X \leq 2n$$
)
= P($|X - \mu| \leq n$)
= P($|X - \mu| \leq \sqrt{n\sigma}$)
= 1 - P($|X - \mu| > \sqrt{n\sigma}$)
 $\geq 1 - \frac{1}{n}$
= RHS,

as desired, where we applied the Chebyshev Inequality for $k = \sqrt{n} > 0$.