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2015.3 Question 8

1. First, notice that
dy

dx
=

dy/dθ

dx/ dθ
=

dr/dθ · sin θ + r · cos θ
dr/dθ · cos θ − r · sin θ

.

Therefore, the original differential equation reduces to

(r sin θ + r cos θ)
dr/dθ · sin θ + r · cos θ
dr/dθ · cos θ − r · sin θ

= r sin θ − r cos θ

which further reduces to (since r ̸= 0)

(sin θ + cos θ)

[
dr

dθ
· sin θ + r cos θ

]
= (sin θ − cos θ)

[
dr

dθ
· cos θ − r sin θ

]
.

Expanding the brackets and cancelling the equivalent terms gives us

r cos2 θ +
dr

dθ
sin2 θ = −dr

dθ
cos2 θ − r sin2 θ,

which reduces to (due to the Pythagoras Theorem sin2 θ + cos2 θ = 1),

dr

dθ
+ r = 0,

as desired.

The rearrangement (since r ̸= 0)
dr

r
= −dθ

shows that the solution to this differential equation must satisfy that (since r > 0)

ln r = −θ + C,

i.e.
r = A exp(−θ),

where A > 0.

For critical values, notice that when θ = 0, r = A, and when θ = 2π, r = A
exp 2π , and that r is

decreasing with θ. The graph will look like a spiral

A sketch is shown below, for θ ∈ [0, 2π).

x

y

r = A exp(−θ), θ ∈ [0, 2π)

(A, 0)

2. Similar to the previous part, the equation reduces to(
sin θ + cos θ − cos θ · r2

) [dr
dθ

· sin θ + r cos θ

]
=
(
sin θ − cos θ − sin θ · r2

) [dr
dθ

· cos θ − r sin θ

]
,

and hence, by expanding brackets and eliminating terms,

dr

dθ
sin2 θ + r cos2 θ − r3 cos2 θ = −r sin2 θ − dr

dθ
cos2 θ + r3 sin2 θ,
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which then simplifies to
dr

dθ
+ r − r3 = 0.

Notice that r = 1 is a solution to this differential equation. Therefore, rearranging terms, we have

dr

r3 − r
= dθ.

By partial fractions
1

r3 − r
= −1

r
+

1

2(r + 1)
+

1

2(r − 1)
,

we therefore must have [
−1

r
+

1

2(r + 1)
+

1

2(r − 1)

]
· dr = dθ.

This therefore means that

1

2
ln|r + 1|+ 1

2
ln|r − 1| − ln|r| = θ + C,

for some constant C ∈ R.
Combining logarithms and absolute values gives us

ln

∣∣∣∣r2 − 1

r2

∣∣∣∣ = 2θ + C,

and therefore,
r2 − 1

r2
= ± expC · exp(2θ),

and this can be simplified to

1− 1

r2
= ± expC · exp(2θ),

and therefore

r2 =
1

1∓ expC · exp(2θ)
.

Let A = ∓ expC ̸= 0, and therefore

r2 =
1

1 +A exp(2θ)
.

Notice when r = 1, r satisfies that
r2 = 1,

so the general solution will be

r2 =
1

1 +A exp(2θ)

for A ∈ R which this equation makes sense.

We restrict ourselves to θ ∈ [0, 2π).

Notice that, this equation makes sense for all A ≥ 0, since the denominator is obviously non-
negative.

For A < 0, the denominator is decreasing in θ, and we would like it to be greater than zero for
some θ ∈ [0, 2π). Therefore, we would like the maximum possible value of the denominator to be
greater than, that is when θ = 0:

1 +A exp 0 > 0,

which gives A > −1.

We consider three cases where r > 0, i.e.,

r =
1√

1 +A exp(2θ)
.

Notice this always passes through
(

1√
1+A

, 0
)
.
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• When −1 < A < 0, the curve is not defined for

1 +A exp(2θ) ≤ 0,

and this is precisely when

exp 2θ ≥ − 1

A
,

which is

θ ≥ 1

2
· ln
(
− 1

A

)
.

This means the curve will have an asymptote of line

θ =
1

2
· ln
(
− 1

A

)
.

Also note that r is increasing in θ in this case, and r → ∞ as θ → the asymptote.

x

y

r = 1√
1+A exp(2θ)

θ = 1
2 · ln

(
− 1

A

)

(
1√
1+A

, 0
)

• When A = 0, notice this just gives r = 1, which is a circle with radius 1 centred at the origin.

x

y

r = 1

(1, 0)(−1, 0)

(0, 1)

(0,−1)

• In the final case where A > 0, the following case arises.

x

y

r = 1√
1+A exp(2θ)

(
1√
1+A

, 0
)

(
1√

1+A exp(2π)
, 0

)
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