2015.3 Question 2

1. Let m = 1000. Notice for all $n \ge m$,

$$n^2 = n \cdot n \ge m \cdot n \ge 1000n.$$

2. This statement is false. Let $s_n = (-1)^n$ and $t_n = -(-1)^n$. Then $s_n = 1$ and $t_n = -1$ for even ns, and $s_n = -1$ and $t_n = 1$ for odd ns.

So $s_n \ge t_n$ for even ns, and $t_n \ge s_n$ for odd ns. Since there can be arbitrarily big even and odd numbers, neither of the statements are true for these sequences.

3. Let m_1 be the m for $(s_n) \leq (t_n)$ and m_2 be the m for $(t_n) \leq (u_n)$. Let $m = \max\{m_1, m_2\}$. Notice that for all $n \geq m$, we have $n \geq m_1$ and therefore $s_n leqt_n$, and $n \geq m_2$ and therefore $t_n \leq u_n$.

By the transitivity of the \leq relation, we have therefore $s_n \leq u_n$, for all $n \geq m$. Therefore, this statement is true.

4. This statement is true. Let m = 4, we aim to prove that $2^n \ge n^2$ for all $n \ge m$.

We first wish to prove the lemma: for all $n \ge 4$, we have $n^2 \ge 2n + 1$.

This is equivalent to proving that $n^2 - 2n + 1 \ge 2$ for all $n \ge 4$.

Notice that $n^2 - 2n + 1 = (n-1)^2 \ge (4-1)^2 = 9 \ge 2$ is true.

This finishes our proof for the lemma.

We show the original statement by mathematical induction.

- (a) **Base case.** For n = 4, we have $2^4 = 16 \ge 4^2 = 16$.
- (b) Inductive step. Assume that $2^k \ge k^2$ for some $n = k \ge 4$. We aim to show that $2^{k+1} \ge (k+1)^2$.

 2^k

$${}^{+1} = 2 \cdot 2^{k}$$

$$\geq 2 \cdot k^{2}$$

$$= k^{2} + k^{2}$$

$$\geq k^{2} + 2k +$$

$$= (k+1)^{2}.$$

1

Therefore, by the principle of mathematical induction, we have $2^n \ge n^2$ for all $n \ge 4$, and this finishes our proof.