2015.3 Question 12

1. Let X be the random variable for the outcome of one die roll. It has probability distribution $P(X = x) = \frac{1}{6}$ for x = 1, 2, ..., 6.

Therefore, R_1 follows the probability distribution $P(R_1 = x) = \frac{1}{6}$ for x = 0, 1, ..., 5, since $R_1 = X \mod 6$.

This means that

$$G(x) = \frac{1}{6} \left(1 + x + x^2 + x^3 + x^4 + x^5 \right).$$

 $R_2 = (X_1 + X_2) \mod 6 = ((R_1)_a + (R_1)_b) \mod 6$, and notice that,

$$G(x)^{2} = \frac{1}{36} \left(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4} + 6x^{5} + 5x^{6} + 4x^{7} + 3x^{8} + 2x^{9} + x^{10} \right).$$

Therefore, combining the terms with the same powers modulo 6, we get

$$G_{R_2}(x) = \frac{1}{36} \left((1+5) + (2+4)x + (3+3)x^2 + (4+2)x^3 + (5+1)x^4 + 6x^5 \right)$$

which simplifies gives G(x), as desired.

Therefore, since $R_n = (X_1 + X_2 + \ldots + X_n) \mod 6 = (R_{n-1} + R_1) \mod 6$, by mathematical induction, we can conclude that the probability generating function for R_n is always G(x).

This means that the probability of R_n being a multiple of 6, is

$$\mathbf{P}\left(6\mid R_{n}\right)=\frac{1}{6}$$

2. Notice that $G_1(x)$, the probability generating function for T_1 must be

$$G_1(x) = \frac{1}{6} \left(1 + 2x + x^2 + x^3 + x^4 \right).$$

Therefore, notice that

$$G_1(x)^2 = \frac{1}{36} \left(1 + 4x + 6x^2 + 6x^3 + 7x^4 + 6x^5 + 3x^6 + 2x^7 + x^8 \right),$$

and combining the powers with the same remainder modulo 5, we have

$$G_2(x) = \frac{1}{36} \left(7 + 7x + 8x^2 + 7x^3 + 7x^4 \right) = \frac{1}{36} \left(x^2 + 7y \right)$$

where $y = 1 + x + x^{2} + x^{3} + x^{4}$, as desired.

Expressing G_1 in terms of y, we have

$$G_1(x) = \frac{1}{6}(x+y).$$

Experimenting with G_3 , we notice

$$G_1(x) \cdot G_2(x) = \frac{1}{6^3}(x+y)(x^2+7y)$$
$$= \frac{1}{6^3}(x^3+7xy+x^2y+7y^2).$$

But notice that up to the congruence of the powers modulo 5, we have $x^n y$ will simplify to simply y, and

$$(x+y)^2 = x^2 + y^2 + 2xy = x^2 + 7y$$

from $G_1(x)^2 = G_2(x)$ implies that y^2 simplifies to 5y. Therefore,

$$G_3(x) = \frac{1}{6^3}(x^3 + 7y + y + 7 \cdot 5y) = \frac{1}{6^3}(x^3 + 43y).$$

Now, we assert that

$$G_n(x) = \frac{1}{6^n} (x^{n \mod 5} + \frac{6^n - 1}{5}y).$$

The base case is shown in G_1 , and now we do the inductive step. Assume that

$$G_k(x) = \frac{1}{6^k} (x^{k \mod 5} + \frac{6^k - 1}{5}y)$$

for some $k \in \mathbb{N}$.

$$\begin{aligned} G_{k+1}(x) &= G_k(x) \cdot G_1(x) \\ &= \frac{1}{6^k} \cdot \left(x^{k \mod 5} + \frac{6^k - 1}{5} y \right) \cdot \frac{1}{6} \cdot (x+y) \\ &= \frac{1}{6^{k+1}} \cdot \left(x^{k \mod 5} \cdot x^1 + x^{k \mod 5} \cdot y + x \cdot \frac{6^k - 1}{5} y + \frac{6^k - 1}{5} y^2 \right) \\ &= \frac{1}{6^{k+1}} \cdot \left(x^{(k+1) \mod 5} + y + \frac{6^k - 1}{5} y + \frac{6^k - 1}{5} \cdot 5y \right) \\ &= \frac{1}{6^{k+1}} \cdot \left(x^{(k+1) \mod 5} + \left(\frac{6^k - 1}{5} + 6^k \right) y \right). \end{aligned}$$

What remains to prove is that

$$\frac{6^k - 1}{5} + 6^k = \frac{6^{k+1} - 1}{5},$$

but this is straightforward since this is just trivial algebra. So our assertion is true, and

$$G_n(x) = \frac{1}{6^n} (x^{n \mod 5} + \frac{6^n - 1}{5}y).$$

Now, the probability of $5 | S_n$ is the coefficient of x^0 (the constant term) in $G_n(x)$. If $5 \nmid n, x^{n \mod 5}$ is not x^0 , and therefore the only term that contributes to the constant term comes from y, therefore

$$P(5 \mid S_n) = \frac{1}{6^n} \cdot \frac{6^n - 1}{5} = \frac{1}{5} \left(1 - \frac{1}{6^n} \right),$$

as required.

If $5 \mid n$, then $x^{n \mod 5}$ will be $x^0 = 1$ contributing to the probability, hence

$$P(5 \mid S_n) = \frac{1}{6^n} \cdot \left(1 + \frac{6^n - 1}{5}\right) = \frac{1}{5} \left(1 + \frac{4}{6^n}\right).$$