2013.3 Question 5

1. Since $q^n N = p^n$, we have $p^n \mid q^n N$, and hence $p \mid q^n N$.

But since gcd(p,q) = 1, we must have $p \mid q^{n-1}N$. Repeating this step we will get $p \mid N$.

Let $N = pN_1$, we have $q^n pN_1 = p^n$, giving $q^n N_1 = p^{n-1}$. Repeating the same step will give $p \mid N_1$. Let $N_1 = pN_2$, we have $q^n pN_2 = p^{n-1}$, giving $q^n N_2 = p^{n-2}$. Repeating the same step will give $p \mid N_2$.

We can repeat this until we reach $q^n N_{n-1} = p$ from which we can conclude $p \mid N_{n-1}$.

So
$$N_{n-1} = kp$$
 for some $k \in \mathbb{N}$.

But since $N_t = pN_{t+1}$, we can conclude that $N_1 = kp^{n-1}$ and hence

$$N = pN_1 = kp^n$$

as desired.

Hence, we have $q^n k p^n = p^n$ which gives $q^n k = 1$. B33gut this means q^n and k must both be one since $q, k \in \mathbb{N}$. Hence, q = 1.

Assume, for the sake of contradiction, that $\sqrt[n]{N}$ is a rational number that is not a positive integer. Let

$$\sqrt[n]{N} = \frac{p}{q},$$

where $p, q \in \mathbb{N}$, gcd(p, q) = 1, and $q \neq 1$ (this is to ensure it is not a positive integer). Hence, by rearrangement, we have

$$q^n N = p^n,$$

and from what we have proved we must have q = 1, which contradicts with $q \neq 1$.

Hence, $\sqrt[n]{N}$ must either be a positive integer or must be irrational.

2. Since $a^a d^b = b^a c^b$, we know that $a^a \mid b^a c^b$. By the same reasoning as part 1, we know that $c^b = ka^a$ for some positive integer k_1 .

Hence, putting it back to the original equation, we have

$$d^b = k_1 b^a,$$

which implies $d^b \ge b^a$.

Since $a^a d^b = b^a c^b$, we know that $c^b \mid a^a d^b$. By the same reasoning as part 1, we know that $a^a = k_2 c^b$ for some positive integer k_2 .

Hence, putting it back to the original equation, we have

$$k_2 d^b = b^a,$$

which implies $b^a \ge d^b$.

This means $d^b = b^a$.

If a prime $p \mid d$, then $p \mid d^b$, and hence $p \mid b^a$.

Since $b^a = bb^{a-1}$, if p does not divide b, this means p and b must be co-prime (since p is a prime), then p must divide b^{a-1} , and repeating this argument eventually reaches p dividing $b^{a-(a-1)}$ which is a contradiction. So p must divide b.

Let $d = p^m d'$, and we must have p not divide d'. Similarly, let $b = p^n b'$, and we must have p does not divide b'.

Putting this back to $d^b = b^a$ shows

$$(p^m d')^b = (p^n b')^a,$$

and hence

$$p^{mb}d'^b = p^{na}b'^a,$$

and we must have p does not divide d'^b nor b'^a .

This means p^{mb} and p^{na} are exactly the highest powers of p that divide $d^b = b^a$, and hence

$$mb = na \iff b = \frac{na}{m}.$$

Since $p^n \mid b$, we must have $p^n \mid \frac{na}{m}$, and hence $p^n \mid na$. However, since a and b are co-prime, and p is a prime factor of b, then p must not divide a, and hence $p^n \mid n$. Hence, $p^n \leq n$.

Since $y^x > x$ for $y \ge 2$ and x > 0, and $p^n \le n$, we must have p < 2 or $n \le 0$. But since p is a prime, $p \ge 2$, so we must have $n \le 0$ and hence n = 0.

This means that the highest power of the prime number p that divides b is always 0, and hence b = 1.

Let

$$r = \frac{p}{q}$$

where $p, q \in \mathbb{N}, \operatorname{gcd}(p, q) = 1$. We have

$$r^r = \frac{r}{s}$$

for $r, s \in \mathbb{N}$, gcd(r, s) = 1. We have

$$\begin{pmatrix} \frac{p}{q} \end{pmatrix}^{\frac{p}{q}} = \frac{r}{s} \\ \begin{pmatrix} \frac{p}{q} \end{pmatrix}^{p} = \begin{pmatrix} \frac{r}{s} \end{pmatrix}^{q} \\ p^{p}s^{q} = q^{p}r^{q}.$$

Here, let a = p, b = q, c = r and d = s. We must have b = q = 1, which contradicts with $q \neq 1$. Therefore, $r = p \in \mathbb{N}$ is a positive integer.