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2013.3 Question 2

We must have

dy d arcsinw

dzx o @ 1 — x2
- < ! -\ 1—2?—arcsinzx - (—2z) - <;) -1>

-2 \Vi—a2 Vi-a?
1 1 arcsin x
i < ”m)
1
=12 (1+zy),
which gives

d
(1—x2)£—xy—1:(1+xy)—:cy—1:0

as desired.
Differentiating both sides of this equation w.r.t. = gives
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which combined gives
d?y dy
1—22). —2 _ Ly =
( ) dz? a7
If we extend the definition of the differentiation operator to
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then this precisely proves the desired statement for the case n = 0 since 2n + 3 = 3 and (n + 1)% = 1,
and we will prove the desired statement for all non-negative integer n. The base case is shown as above.
Now, assume the given holds for some n = k where k is a non-negative integer, i.e.
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we aim to show that the same holds for n = k + 1.
Differentiating both sides with respect to = gives
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which then simplifies to
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But notice that n+2 = (k+1)+2=k+3,n+1= (k+1)+1 =k+2, (n+1)? = (k+2)? = k? + 4k +4,
2n+3 = 2(k+ 1) + 3 = 2k + 5, so this is exactly the statement when n = k + 1, which finishes our
inductive step.

Hence, by the Principle of Mathematical Induction, we can conclude that the original statement holds
for any non-negative integer n, and hence for any positive integer n.

We have that i
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and evaluating the equation on the first derivative at x = 0 gives
dy

=1.
dz|,_,

Eason Shao Page 82 of 430



STEP Project

Year 2013 Paper 3

Evaluating the proven equation at x = 0 gives
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Using this, we can conclude that
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for all » > 0 where 7 is an integer, since it is 0 when n = 0, and that
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for all > 0 where 7 is an integer, by mathematical induction.
arcsin x

Hence, the MacLaurin Series for Wit must be
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This means the general term for even powers of x is zero, and the general term for odd powers of z is
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where r is any non-negative integer.
The infinite sum can be expressed as
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which is precisely double the value of
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Hence, the sum evaluates to 33
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