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2013.3 Question 2

We must have

dy

dx
=

d

dx
· arcsinx√

1− x2

=
1

1− x2
·
(

1√
1− x2

·
√
1− x2 − arcsinx · (−2x) ·

(
1

2

)
· 1√

1− x2

)
=

1

1− x2
·
(
1 + x · arcsinx√

1− x2

)
=

1

1− x2
· (1 + xy) ,

which gives

(1− x2)
dy

dx
− xy − 1 = (1 + xy)− xy − 1 = 0

as desired.
Differentiating both sides of this equation w.r.t. x gives

d2y

dx2
· (1− x2)− 2x · dy

dx
− y − x

dy

dx
= 0,

which combined gives

(1− x2) · d
2y

dx2
− 3x · dy

dx
− y = 0.

If we extend the definition of the differentiation operator to

d0y

dx0
= y,

then this precisely proves the desired statement for the case n = 0 since 2n + 3 = 3 and (n + 1)2 = 1,
and we will prove the desired statement for all non-negative integer n. The base case is shown as above.

Now, assume the given holds for some n = k where k is a non-negative integer, i.e.

(1− x2) · d
k+2y

dxk+2
− (2k + 3)x · d

k+1y

dxk+1
− (k + 1)2 · d

ky

dxk
= 0,

we aim to show that the same holds for n = k + 1.
Differentiating both sides with respect to x gives

(−2x) · d
k+2y

dxk+2
+ (1− x2) · d

k+3y

dxk+3
− (2k + 3) · d

k+1y

dxk+1
− (2k + 3)x · d

k+2y

dxk+2
− (k + 1)2 · d

k+1y

dxk+1
= 0,

which then simplifies to

(1− x2) · d
k+3y

dxk+3
− (2k + 5)x · d

k+2y

dxk+2
− (k2 + 4k + 4) · d

k+1y

dxk+1
= 0.

But notice that n+2 = (k+1)+2 = k+3, n+1 = (k+1)+1 = k+2, (n+1)2 = (k+2)2 = k2+4k+4,
2n + 3 = 2(k + 1) + 3 = 2k + 5, so this is exactly the statement when n = k + 1, which finishes our
inductive step.

Hence, by the Principle of Mathematical Induction, we can conclude that the original statement holds
for any non-negative integer n, and hence for any positive integer n.

We have that

y|x=0 =
arcsin 0√
1− 02

=
0

1
= 0,

and evaluating the equation on the first derivative at x = 0 gives

dy

dx

∣∣∣∣
x=0

= 1.
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Evaluating the proven equation at x = 0 gives

dn+2y

dxn+2

∣∣∣∣
x=0

= (n+ 1)2
dny

dxn

∣∣∣∣
x=0

.

Using this, we can conclude that
d2ry

dx2r

∣∣∣∣
x=0

= 0

for all r ≥ 0 where r is an integer, since it is 0 when n = 0, and that

d2r+1y

dx2r+1

∣∣∣∣
x=0

= ((2r)!!)2 = 22r · (r!)2

for all r ≥ 0 where r is an integer, by mathematical induction.
Hence, the MacLaurin Series for arcsin x√

1−x2
, must be

arcsinx√
1− x2

=

∞∑
k=0

dky
dxk

∣∣∣
x=0

k!
· xk

=

∞∑
r=0

d2ry
dx2r

∣∣∣
x=0

(2r)!
· x2r +

∞∑
r=0

d2r+1y
dx2r+1

∣∣∣
x=0

(2r + 1)!
· x2r+1

= 0 +

∞∑
r=0

22r · (r!)2

(2r + 1)!
· x2r+1

=

∞∑
r=0

22r · (r!)2

(2r + 1)!
· x2r+1.

This means the general term for even powers of x is zero, and the general term for odd powers of x is

22r · (r!)2

(2r + 1)!
· x2r+1

where r is any non-negative integer.
The infinite sum can be expressed as

∞∑
r=0

(r!)2

(2r + 1)!
= 2 ·

∞∑
r=0

22r · (r!)2

(2r + 1)!
·
(
1

2

)2r+1

,

which is precisely double the value of[
arcsinx√
1− x2

]
x= 1

2

=
arcsin 1

2√
1−

(
1
2

)2 =
π/6√
3/2

=
π

3
√
3
,

Hence, the sum evaluates to 2π
3
√
3
.
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