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2011.3 Question 13
1. We first find the expression given by the question.

k!
b/n GFDNk—r—1)1

(n—">b)/n %

b rl(k —r)!
n—b (r+0k—r—1)
b k—r

n—b r+1

b k+171
T n—=b \r+1 ’

and we can see that this decreases as r increases.

If the most probable number of black balls in the sample is unique (let it be 7¢), then we have
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This means rg is the minimal solution to the inequality
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This could be simplified to
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It is not unique when there exists some r where
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which means there exists an integer r such that
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This happens if and only if n | b(k + 1).
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2. Let Y be the number of black balls in the sample. Similarly, we have
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The most probable number of black balls is the smallest solution to
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This means the most probable number of black balls, given its uniqueness, is
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is an integer, if and only if
(n+2)| (n+1)(k+1).
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