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2024.3 Question 1

1. For the first identity, notice that

1

r + 1
− 1

r
+

1

r2
=

r2 − r(r + 1) + (r + 1)

r2(r + 1)

=
r2 − r2 − r + r + 1

r2(r + 1)

=
1

r2(r + 1)
,

and hence using this,

N∑
r=1

1

r2(r + 1)
=

N∑
r=1

(
1

r + 1
− 1

r
+

1

r2

)

=

N∑
r=1

1

r2
+

N∑
r=1

1

r + 1
−

N∑
r=1

1

r

=

N∑
r=1

1

r2
+

N+1∑
r=2

1

r
−

N∑
r=1

1

r

=

N∑
r=1

1

r2
− 1

1
+

1

N + 1

=

N∑
r=1

1

r2
− 1 +

1

N + 1
.

Let N → ∞, and we have 1
N+1 → 0, and hence

∞∑
r=1

1

r2(r + 1)
=

∞∑
r=1

1

r2
− 1 =

π2

6
− 1.

2. By partial fractions, let

1

r2(r + 1)(r + 2)
=

Ar +B

r2
+

C

r + 1
+

D

r + 2

for real constants A,B,C and D.

Hence,
(Ar +B)(r + 1)(r + 2) + Cr2(r + 2) +Dr2(r + 1) = 1.

Let r = −2, we have D · (−2)2 · (−1) = −4D = 1, and hence D = − 1
4 .

Let r = −1, we have C · (−1)2 · 1 = C = 1, and hence C = 1.

Let r = 0, we have B · 1 · 2 = 1, and hence B = 1
2 .

Considering the coefficient of r3, we have A+ C +D = 0, and hence A = − 3
4 .

Hence,
1

r2(r + 1)(r + 2)
= −3

4
· 1
r
+

1

2
· 1

r2
+

1

r + 1
− 1

4
· 1

r + 2
.
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Therefore,

N∑
r=1

1

r2(r + 1)(r + 2)
= −3

4

N∑
r=1

1

r
+

1

2

N∑
r=1

1

r2
+

N∑
r=1

1

r + 1
− 1

4

N∑
r=1

1

r + 2

=
1

2
SN − 3

4
·

N∑
r=1

1

r
+

N+1∑
r=2

1

r
− 1

4

N+2∑
r=3

1

r

=
1

2
SN − 3

4

N∑
r=3

1

r
+

N∑
r=3

1

r
− 1

4

N∑
r=3

1

r

=
1

2
SN − 3

4

(
1

1
+

1

2

)
+

(
1

2
+

1

N + 1

)
− 1

4

(
1

N + 1
+

1

N + 2

)
=

1

2
SN − 9

8
+

4

8
+

3

4
· 1

N + 1
− 1

4
· 1

N + 2

=
1

2
SN − 5

8
+

3

4
· 1

N + 1
− 1

4
· 1

N + 2
.

Let N → ∞, we have 1
N+1 ,

1
N+2 → 0, and hence

∞∑
r=1

1

r2(r + 1)(r + 2)
=

1

2
lim

N→∞
SN − 5

8
=

π2

12
− 5

8
.

3. Similarly, let
1

r2(r + 1)2
=

A

r2
+

B

r
+

C

(r + 1)2
+

D

r + 1

for some real constants A,B,C and D.

Hence,
1 = A(r + 1)2 +Br(r + 1)2 + Cr2 +Dr2(r + 1).

Let r = 0, and we have A = 1. Let r = −1, and we have C = 1. Considering the coefficient of r3

we have B +D = 0, and for r, 2A+B = 0.

Hence, B = −2, D = 2, and

1

r2(r + 1)2
=

1

r2
− 2

r
+

1

(r + 1)2
+

2

r + 1
.

Therefore, for natural numbers N , we have

N∑
r=1

1

r2(r + 1)2
=

N∑
r=1

1

r2
+

N∑
r=1

1

(r + 1)2
+ 2

N∑
r=1

1

r + 1
− 2

N∑
r=1

1

r

= SN +

N+1∑
r=1

1

r2
+ 2

N+1∑
r=2

1

r
− 2

N∑
r=1

1

r

= SN + SN+1 −
1

12
+ 2 · 1

N + 1
− 2 · 1

= SN + sN+1 + 2 · 1

N + 1
− 3.

Eason Shao Page 406 of 430



STEP Project Year 2024 Paper 3

Let N → ∞. SN , SN+1 → π2

6 , and 1
N+1 → 0. Hence,

∞∑
r=1

1

r2(r + 1)2
= 2 · π

2

6
− 3

=
π2

3
− 3

= 2 ·
(
π2

6
− 1

)
− 1

= 2

∞∑
r=1

1

r2(r + 1)
− 1

=

∞∑
r=1

2

r2(r + 1)
− 1,

as desired.
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2024.3 Question 2

1. (a) We have √
4x2 − 8x+ 64 ≤ |x+ 8| ⇐⇒ 0 ≤ 4x2 − 8x+ 64 ≤ (x+ 8)2.

The left inequality can be simplified as follows:

4x2 − 8x+ 64 ≥ 0

x2 − 2x+ 16 ≥ 0

(X − 1)2 + 15 ≥ 0,

which is always true.

The right inequality can be simplified as follows:

4x2 − 8x+ 64 ≤ (x+ 8)2

4x2 − 8x+ 64 ≤ x2 + 16x+ 64

3x2 − 24x ≤ 0

x(x− 8) ≤ 0,

which solves to 0 ≤ x ≤ 8.

Hence, the solution to the original inequality is x ∈ [0, 8].

(b) WE have √
4x2 − 8x+ 64 ≤ |3x− 8| ⇐⇒ 0 ≤ 4x2 − 8x+ 64 ≤ (3x− 8)2.

The left inequality is always true from the previous part.

The right inequality can be simplified as follows:

4x2 − 8x+ 64 ≤ (3x− 8)2

4x2 − 8x+ 64 ≤ 9x2 − 48x+ 64

5x2 − 40x ≥ 0

x(x− 8) ≥ 0,

which solves to x ≤ 0 or x ≥ 8.

Hence, the solution to the original inequality is x ∈ (−∞, 0] ∪ [8,∞).

2. (a) We have (√
4x2 − 8x+ 64 + 2(x− 1)

)
f(x) =

(√
4x2 − 8x+ 64

)2
− [2(x− 1)]2

=
(
4x2 − 8x+ 64

)
− 4

(
x2 − 2x+ 1

)
=
(
4x2 − 8x+ 64

)
−
(
4x2 − 8x+ 4

)
= 60.

Hence,

f(x) =
60√

4x2 − 8x+ 64 + 2(x− 1)
.

As x → ∞,
√
4x2 − 8x+ 64 → ∞, 2(x− 1) → ∞.

Hence, f(x) → 0 as x → ∞.

(b) Let f1(x) =
√
4x2 − 8x+ 64, f2(x) = 2(x− 1).

f1(0) =
√
64 = 8, and f2(0) = 2 · (−1) = −2.

We have f(x) = f1(x)− f2(x) > 0 from the previous part, and that f1(x) is defined for all x
and is always positive.

Furthermore,

f1(x) = 2
√

x2 − 2x+ 16 = 2
√
(x− 1)2 + 15,

and hence f1 decreases on (−∞, 1) and increases on (1,∞), taking a minimum of f1(1) = 2
√
15.

In terms of symmetry, we have f1(1 − x) = f1(1 + x) and f2(1 − x) = −f2(1 + x). f2 is an
asymptote to f1 as x → ∞, and −f2 is an asymptote to f1 as x → −∞.

Hence, the sketch looks as follows.
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x

y

y =
√
4x2 − 8x+ 64

y = 2(x− 1)

y = 2(1− x)

(0,−2)

(2, 2)

(0, 8) (2, 8)(
1, 2

√
15
)8

2
√
15

2

−2

1 2O

3. Let x = 3, and we must have
√
4 · 9− 5 · 3 + 4 = |3m+ c|, and hence 5 = |3m+ c|.

This is only achievable for m = ±2 due to the diagram – the solution set can only be ’one-sided’
if on the other side the absolute value is eventually ’parallel’ to the curve.

We let m = 2, and hence 5 = |6 + c|, which gives c = −1 or c = −11.

We would like to show that the desired value is c = −1, and that c = −11 does not work.√
4x2 − 5x+ 4 ≤ |2x− 1| ⇐⇒ 0 ≤ 4x2 − 5x+ 4 ≤ (2x− 1)2.

The left inequality can be simplified as

0 ≤ 4x2 − 5x+ 4 =

(
2x− 5

4

)2

+
39

16
,

and hence is always true.

The right inequality can be simplified as

4x2 − 5x+ 4 ≤ (2x− 1)2

4x2 − 5x+ 4 ≤ 4x2 − 4x+ 1

x ≥ 3,

and hence the solution set to the whole inequality is x ≥ 3 as desired.

On the other hand, for the case of c = −11, we have√
4x2 − 5x+ 4 ≤ |2x− 11| ⇐⇒ 0 ≤ 4x2 − 5x+ 4 ≤ (2x− 11)2,
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and the left inequality is always true by previously. However, the right inequality simplifies as

4x2 − 5x+ 4 ≤ (2x− 11)2

4x2 − 5x+ 4 ≤ 4x2 − 44x+ 121

39x ≤ 117

x ≤ 3,

and the inequality is in the wrong direction.

Hence, a possible value of m is 2, and the corresponding value of c is −1.

4. The diagram as follows shows the only possibility of the configuration.

x

y

O

y =
∣∣x2 + px+ q

∣∣

y = mx+ c

−5 1 5 7

Hence, we must have x2 + px+ q = mx+ c for x = −5 and x = 7, and x2 + px+ q = −mx− c for
x = 1 and x = 5. 

25− 5p+ q = −5m+ c,

49 + 7p+ q = 7m+ c,

1 + p+ q = −(m+ c),

25 + 5p+ q = −(5m+ c).

Subtracting the first equation from the final equation gives 10p = −2c, and hence c = −5p.

Subtracting the first equation from the second equation gives us 24 + 12p = 12m, and hence
m = 2 + p.

Putting these into the third equation gives

q = −m− c−;−1

= −(2 + p)− (−5p)− p− 1

= 3p− 3.

Eason Shao Page 410 of 430



STEP Project Year 2024 Paper 3

Putting all these into the final equation gives

25 + 5p+ (3p− 3) = − [5(2 + p) + (−5p)]

25 + 8p− 3 = −(10 + 5p− 5p)

22 + 8p = −10

8p = −32

p = −4,

and so q = −15,m = −2, c = 20. Hence,

(p, q,m, c) = (−4,−15,−2, 20).
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2024.3 Question 3

1. (a) Notice that by partial fractions, we have

x+ c

x(x+ 1)
=

1− c

x+ 1
+

c

x
.

Hence, by differentiating, we have

g′(x) =
1

1 + 1
x

·
(
− 1

x2

)
+

1− c

(x+ 1)2
+

c

x2

= − 1

x2 + x
+

1− c

(x+ 1)2
+

c

x2

=
−x(x+ 1) + (1− c)x2 + c(x+ 1)2

(x+ 1)2x2

=
cx2 + 2cx+ c+ x2 − cx2 − x2 − x

(x+ 1)2x2

=
(2c− 1)x+ c

(x+ 1)2x2
.

Given that c ≥ 1
2 , and x > 0, we have 2c− 1 ≥ 0, and (2c− 1)x ≥ 0.

Hence, the numerator satisfies (2c − 1)x + c ≥ c ≥ 1
2 > 0, and the denominator is always

positive since is a product of squares, and both squares are non-zero since x > 0.

We can now conclude that g′(x) > 0 given c ≥ 1
2 for x > 0, as desired.

(b) If 0 ≤ c < 1
2 , g

′(x) < 0 if and only if

(2c− 1)x+ c < 0

(1− 2c)x− c > 0

(1− 2c)x > c

x >
c

1− 2c
,

and the values of x are x > c
1−2c .

2. (a) If c = 3
4 ≥ 1

2 , we can see that g is always increasing.

As x → ∞, x+c
x(x+1) → 0, ln

(
1 + 1

x

)
→ ln 1 = 0. Hence, g(x) → 0.

Since g is increasing it must stay entirely below the x-axis.

The sketch is as follows.

x

y

O

(b) If c = 1
4 ∈

[
0, 1

2

)
, it must be the case that g′(x) > 0 for 0 < x < c

1−2c = 1
2 , and g′(x) < 0 for

x > 1
2 .
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Hence, x = 1
2 is a maximum on the graph, and the corresponding y-coordinate is g

(
1
2

)
=

ln 3− 1.

Similarly, as x → ∞, g(x) → 0.

The sketch is as follows.

x

y

O

(
1
2 , ln 3− 1

)

3. We have

f(x) =

(
1 +

1

x

)x+c

ln f(x) = (x+ c) ln

(
1 +

1

x

)
f ′(x)

f(x)
= ln (1 + x)− (x+ c)

1

x(x+ 1)

f ′(x)

f(x)
= g(x)

f ′(x) = f(x)g(x).

f(x) is positive for x > 0, and hence f ′(x) takes the same sign as g(x).

(a) If c ≥ 1
2 , g is increasing and has a limit of 0 at infinity. Hence, g(x) is negative for all x > 0,

which means f ′(x) is negative for all x > 0, and hence f is decreasing.

(b) If 0 < c < 1
2 , g is negative first, then increases to a positive value, and remains positive and

approaches 0 decreasing from above. Hence, f ′ is first positive and then negative, so f must
have a turning point.

(c) If c = 0,

g′(x) =
−x

(x+ 1)2x2
= − 1

(x+ 1)2x

is always negative, and limx→0+ g′(x) = −∞, limx→∞ g′(x) = 0.

We have

g(x) = ln

(
1 +

1

x

)
− 1

x+ 1
.

As x → 0+, 1
x → ∞, so ln

(
1 + 1

x

)
→ ∞, and − 1

x+1 → − 1
1 = −1. Hence, g(x) → ∞.

As x → ∞, g(x) → 0.

Since g is decreasing, it must be the case that g is always positive.

This means that f ′ is always positive as well, and hence f is increasing.
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2024.3 Question 4

1. The angle between a line with gradient m and the positive x-axis is arctanm. Hence, we must have

arctanm1 − arctanm2 = ±π

4

tan (arctanm1 − arctanm2) = tan
(
±π

4

)
m1 −m2

1 +m1m2
= ±1,

as desired.

2. We have y = x2

4a , and hence dy
dx = x

2a . Hence, the tangent to the point
(
p, p2

4a

)
is given by

y − p2

4a
=

p

2a
(x− p)

4ay − p2 = 2p(x− p)

4ay = 2px− p2,

with gradient 2p
4a = p

2a , and the tangent to the point
(
q, q2

4a

)
is given by 4ay = 2qx + q2, with

gradient q
2a .

Hence, when they intersect, it must be the case that

2px− p2 = 2qx− q2

2(p− q)x = p2 − q2

2(p− q)x = (p+ q)(p− q)

x =
p+ q

2

since p ̸= q.

The y-coordinate is given by

y =
2px− p2

4a

=
p2 + pq − p2

4a

=
pq

4a
.

If the two curves meet at π
4 , the gradients must satisfy that

p
2a − q

2a

1 + p
2a · q

2a

= ±1

2a(p− q)

4a2 + pq
= ±1

2a(p− q) = ±
(
4a2 + pq

)
4a2(p− q)2 = (4a2 + pq)2

4a2p2 − 8a2pq + 4a2q2 = 16a4 + 8a2pq + p2q2

p2q2 + 16a2pq + 16a4 − 4a2p2 − 4a2q2 = 0.

For the intersection of the two tangents, we consider (y + 3a)2 − (8a2 + x2).

(y + 3a)2 − (8a2 + x2) = y2 + 6ay + 9a2 − 8a2 − x2

= y2 + 6ay − x2 + a2

=
p2q2

16a2
+ 6a · pq

4a
−
(
p+ q

2

)2

+ a2

=
p2q2

16a2
+

3pq

2
− (p+ q)2

4
+ a2.
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We have the following being equivalent:

(y + 3a)2 = 8a2 + x2

p2q2

16a2
+

3pq

2
− (p+ q)2

4
+ a2 = 0

p2q2 + 3pq · 8a2 − (p+ q)2 · 4a2 + a2 · 16a2 = 0

p2q2 + 24pqa2 − 4a2p2 − 4a2q2 − 8pqa2 + 16a4 = 0

p2q2 + 16a2pq + 16a4 − 4a2p2 − 4a2q2 = 0,

which was true due to the tangents intersecting at π
4 .

Hence, we must have the intersection of two tangents lie on (y + 3a)2 = 8a2 + x2, which finishes
our proof.

3. Let θ be this acute angle, and from the previous part, we can see that

4a2(p− q)2 = tan2 θ(4a2 + pq)2

4a2p2 − 8a2pq + 4a2q2 = tan2 θ16a4 + tan2 θ8a2pq + tan2 θp2q2

tan2 θp2q2 + 8(tan2 θ + 1)a2pq + tan2 θ16a4 = 4a2p2 + 4a2q2

Given (y + 7a)2 = 48a2 + 3x2 for the intersection of the two tangents, we have

(y + 7a)2 −
(
48a2 + 3x2

)
= 0(pq

4a
+ 7a

)2
−

(
48a2 + 3

(
p+ q

2

)2
)

= 0

p2q2

16a2
+

7pq

2
+ 49a2 − 48a2 − 3(p+ q)2

4
= 0

p2q2 + 8a2 · 7pq + 16a4 − 3(p+ q)2 · 4a2 = 0

p2q2 + 56pqa2 + 16a4 − 12p2a2 − 12q2a2 − 24pqa2 = 0

p2q2 + 32pqa2 + 16a4 − 12p2a2 − 12q2a2 = 0

p2q2 + 32pqa2 + 16a4 − 3
(
tan2 θp2q2 + 8(tan2 θ + 1)a2pq + 16 tan2 θa4

)
= 0

(1− 3 tan2 θ)p2q2 + 8(1− 3 tan2 θ)pqa2 + 16(1− 3 tan2 θ)a4 = 0

(1− 3 tan2 θ)
[
p2q2 + 8pqa2 + 16a4

]
= 0

(1− 3 tan2 θ)(pq + 4a2)2 = 0.

Hence, either pq + 4a2 = 0, or 1 − 3 tan2 θ = 0. The former cannot always the case. Therefore,

1− 3 tan2 θ = 0, which gives tan θ = ±
√
3
3 .

Since θ is acute, we have tan θ =
√
3
3 , and hence θ = π

6 is the acute angle between the two tangents.
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2024.3 Question 5

1. Let

M =

(
a b
c d

)
,N =

(
e f
g h

)
,

and hence we have
trM = a+ d, trN = e+ h.

Notice that

MN =

(
ae+ bg af + bh
ce+ dg cf + dh

)
,NM =

(
ae+ cf be+ df
ag + ch bg + dh

)
,

which means
tr(MN) = ae+ bg + cf + dh, tr(NM) = ae+ cf + bg + dh,

and hence tr(MN) = tr(NM) as desired.

We also have

M+N =

(
a+ e b+ f
c+ g d+ h

)
,

meaning tr(M+N) = a+ e+ d+ h = (a+ d) + (e+ h) = trM+ trN.

2. We have detM = ad− bc, and hence

d

dt
detM = ȧd+ aḋ− ḃc− bċ.

Hence,

LHS =
1

ad− bd

(
ȧd+ aḋ− ḃc− bċ

)
.

On the other hand,
dM

dt
=

(
ȧ ḃ

ċ ḋ

)
,M−1 =

1

ad− bc

(
d −b
−c a

)
,

and hence

M−1 dM

dt
=

1

ad− bc

(
d −b
−c a

)(
ȧ ḃ

ċ ḋ

)
=

1

ad− bc

(
ȧd− bċ ḃd− bḋ

−ȧc+ aċ −ḃc+ aḋ

)
.

Hence,

RHS = tr

(
M−1 dM

dt

)
=

1

ad− bc

(
ȧd− bċ− ḃc+ aḋ

)
=

1

ad− bc

(
ȧd+ aḋ− bċ− ḃc

)
= LHS,

as desired.

3. detM ̸= 0 since M is non-singular, and hence left-multiplying by M−1 on both sides gives us

M−1 dM

dt
= N−M−1NM.
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Taking trace on both sides, we have

1

detM

d

dt
detM = tr

(
M−1 dM

dt

)
= tr

(
N−M−1NM

)
= trN− tr

(
M−1NM

)
= trN− tr

((
M−1N

)
M
)

= trN− tr
(
M
(
M−1N

))
= trN− tr

((
MM−1

)
N
)

= trN− tr (IN)

= trN− trN

= 0.

Hence, d
dt detM = 0, which means detM is a constant independent of t.

Directly taking trace on both sides, we have

tr
dM

dt
= tr(MN−NM)

= tr(MN)− tr(NM)

= 0,

and note

tr
dM

dt
=

d

dt
trM,

and hence
d

dt
trM = 0,

meaning trM is a constant independent of t.

Notice that

tr
(
M2
)
= tr

[(
a b
c d

)(
a b
c d

)]
= a2 + bc+ bc+ d2 = a2 + 2bc+ d2.

Since trM and detM are both independent of t, we must have

(trM)2 − 2 detM = (a+ d)2 − 2(ad− bc)

= a2 + 2ad+ d2 − 2ad+ 2bc

= a2 + 2bc+ d2

= tr
(
M2
)

is independent of t as well.

Let

M =

(
A+ x b

c D − x

)
,

the diagonal ones being so since the trace is independent of t. Here, x is a function of t.

By differentiating,
dM

dt
=

(
ẋ ḃ
ċ −ẋ

)
,

and the right-hand side satisfies

MN−NM =

(
A+ x b

c D − x

)(
t t

t

)
−
(
t t

t

)(
A+ x b

c D − x

)
=

(
t(A+ x) (A+ x)t+ bt

ct ct+ (D − x)t

)
−
(
t(A+ x) + ct bt+ t(D − x)

ct t(D − x)

)
=

(
−ct (A−D + 2x)t
0 ct.

)
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Comparing the components, we see that ċ = 0, meaning that c is a constant: c = C.

Hence, ẋ = −Ct, which solves to x = −Ct2

2 , since x = 0 when t = 0.

This means
ḃ = (A−D + 2x)t = (A−D − Ct2)t,

and hence

b =
(A−D)t2

2
− Ct4

4
+B

since b = B when t = 0.

Hence,

M =

(
A− Ct2/2 (A−D)t2/2− Ct4/4

C D + Ct2/2

)
is the solution given the conditions.

4. By rearranging, we have

N = M−1 dM

dt
.

Hence, let

M =

(
1 + et

1− et

)
,

we have
trM = 2

which is non-zero and independent of t.

Hence,

M−1 =
1

1− e2t

(
1− et

1 + et

)
,
dM

dt
=

(
et

−et

)
,

so

N =
1

1− e2t

(
1− et

1 + et

)(
et

−et

)
=

1

1− e2t

(
et(1− et)

−et(1 + et)

)
,

which gives

trN =
e2t

e2t − 1

which is clearly non-zero.
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2024.3 Question 6

1. (a) We have

dx− y

dt
=

dx

dt
− dy

dt
= (−x+ 3y + u)− (x+ y + u)

= −2x+ 2y

= −2(x− y).

This is a differential equation for x− y in terms of t, and hence it solves to

x− y = Ae−2t.

If x = y = 0 for some t > 0, then it must be the case that A = 0, giving x− y = 0, and x = y.

Therefore, for t = 0, we must also necessarily have x0 = y0.

(b) Given that x0 = y0, we must have x = y for all t > 0. Hence,

dx

dt
= −x+ 3x+ u

dx

dt
= 2x+ u

dx

2x+ u
= dt

ln|2x+ u| = 2t+ C

2x+ u = Ae2t.

Since at t = 0, x = x0, we must have A = 2x0 + u, and hence

2x+ u = (2x0 + u)e2t,

and rearranging gives

u =
2(x0e

2t − x)

1− e2t
.

The particle is at origin at time t = T > 0, and hence x = y = 0 for t = T , and hence

u =
2x0e

2T

1− e2T
.

This ensures the particle is at origin as well since this ensures the particle is at x = 0 for
t = T , and y = x so y = 0 as well.

2. (a) Consider dx
dt + dz

dt − 2dy
dt , and we have

dx+ z − 2y

dt
=

dx

dt
+

dz

dt
− 2

dy

dt
= (4y − 5z + u) + (x− 2y + u)− 2(x− 2z + u)

= 4y − 5z + u+ x− 2y + u− 2x+ 4z − 2u

= −x− z + 2y,

and hence
x+ z − 2y = Ae−t.

Since the particle is at the origin at some time t > 0, we must have A = 0, and hence

x+ z − 2y = 0,

which means y = x+z
2 for all time t.

At time t = 0, y0 = x0+z0
2 , and so y0 is the mean of x0 and z0.
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(b) Since 2y = x+ z, we must have

dx

dt
= 2(x+ z)− 5z + u = 2x− 3z + u,

and
dz

dt
= x− (x+ z) + u = −z + u.

Hence, considering dx
dt − dz

dt , we have

dx− z

dt
=

dx

dt
− dz

dt
= (2x− 3z + u)− (−z + u)

= 2(x− z),

which gives
x− z = Ae2t.

Since the particle is at the origin for some t > 0, we must have A = 0. This means x = z for
all t, and further we have x = y = z for all t since 2y = x+ z.

At t = 0, this means x0 = y0 = z0 as desired.

(c) Given that x0 = y0 = z0, all previous parts still apply, since the boundary condition of
2y = x+ z and x = z holds for t = 0. Hence, x = y = z for all t, and

dx

dt
= −x+ u

dx

x− u
= −dt

ln|x− u| = −t+ C

x− u = Ae−t.

At t = 0, x = x0, we must have A = x0 − u, and hence

x− u = (x0 − u)e−t,

and rearranging gives

u =
x0e

−t − x

1− e−t
.

The particle is at origin at a time t = T > 0, and hence x = y = z = 0 for t = T , and hence

u =
x0e

−T

1− e−T
=

x0

1 + eT
.

This ensures the particle is at origin as well since this ensures the particle is at x = 0 for
t = T , and x = y = z, so y = z = 0 as well.
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2024.3 Question 7

1. For the left inequality, f(n) > 0 since f(n) > 1
n+1 > 0.

For the right inequality, we notice that

f(n) =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

<
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1

n+ 1
· 1

1− 1
n+1

=
1

(n+ 1)− 1

=
1

n
.

Hence,

0 < f(n) <
1

n
.

2. For the left inequality, by grouping consecutive terms, we have

g(n) =
1

n+ 1
− 1

(n+ 1)(n+ 2)

+
1

(n+ 1)(n+ 2)(n+ 3)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+ · · ·

=

(
1

n+ 1
− 1

(n+ 1)(n+ 2)

)
+

(
1

(n+ 1)(n+ 2)(n+ 3)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

)
+ · · ·

>

(
1

n− 1
− 1

n+ 1

)
+

(
1

(n+ 1)(n+ 2)(n+ 3)
− 1

(n+ 1)(n+ 2)(n+ 3)

)
+ · · ·

= 0 + 0 + · · ·
= 0,

using the inequality

1

(n+ 1) · · · (n+ k)
>

1

(n+ 1) · · · (n+ k)(n+ k + 1)
.
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For the right inequality, by grouping consecutive after the first one, we have

g(n) =
1

n+ 1
− 1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)

− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
− · · ·

=
1

n+ 1
−
(

1

(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)(n+ 3)

)
−
(

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)

)
− · · ·

<
1

n+ 1
−
(

1

(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)

)
−
(

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
− 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

)
− · · ·

=
1

n+ 1
− 0− 0− · · ·

=
1

n+ 1
,

using the inequality

1

(n+ 1) · · · (n+ k − 1)(n+ k)
<

1

(n+ 1) · · · (n+ k − 1)
.

Hence,

0 < g(n) <
1

n+ 1
.

3. The infinite series for e is given by

e =

∞∑
t=0

1

t!
,

and notice that

f(n) =

∞∑
t=1

n!

(n+ t)!
= n!

∞∑
t=1

1

(n+ t)!
.

Hence,

(2n)!e− f(2n) = (2n)!

∞∑
t=0

1

t!
− (2n)!

∞∑
t=1

1

(2n+ t)!

= (2n)!

( ∞∑
t=0

1

t!
−

∞∑
t=2n+1

1

t!

)

= (2n)!

2n∑
t=0

1

t!

=

2n∑
t=0

(2n)!

t!
.

Since t ≤ 2n, the terms in the sum represents the number of ways to arrange (2n− t) items out of
2n items, which must be integers. Hence, the sum is an integer as well.

Similarly, the infinite series for e−1 is given by

e−1 =

∞∑
t=0

(−1)t

t!
,

and notice that

g(n) = −
∞∑
t=1

(−1)tn!

(n+ t)!
= −n!

∞∑
t=1

(−1)t

(n+ t)!
.
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Hence,

(2n)!

e
+ g(2n) = (2n)!

∞∑
t=0

(−1)t

t!
− (2n)!

∞∑
t=1

(−1)t

(n+ t)!

= (2n)!

( ∞∑
t=0

(−1)t

t!
−

∞∑
t=2n+1

(−1)t

t!

)

= (2n)!

2n∑
t=0

(−1)t

t!

=

2n∑
t=0

(−1)t(2n)!

t!
,

and by the same argument, since t ≤ 2n, this must be an integer as well.

4. By the previous part, let a(n) = f(2n) − (2n)!e, and b(n) = g(2n) + (2n)!
e , we must have that

a, b : N → Z since they are integers.

Using this notation,

qf(2n) + pg(2n) = qa(2n) + qe(2n)! + pb(2n)− p

e
(2n)!

= qa(2n) + pb(2n) +
(
qe− p

e

)
(2n)!

= qa(2n) + pb(2n)

must be an integer, since p, q, a(2n), b(2n) are all integers.

5. Assume B.W.O.C. that e2 is irrational. Then there exists natural numbers p, q such that

e2 =
p

q
⇐⇒ qe =

p

e
.

Since e2 > 1, p > q.

On one hand, we have qf(2n) + pg(2n) > 0.

On the other hand, let n = p,

qf(2n) + pg(2n) < q · 1

2p
+ p · 1

2p+ 1

< q · 1

2p
+ p · 1

2p

=
p+ q

2p

<
2p

2p

= 1.

This means
0 < qf(2p) + pg(2p) < 1.

But by the previous part, qf(2n) + pg(2n) is an integer for all positive integer n, and n = p is a
positive integer. This leads to a contradiction.

Hence, such p and q does not exist, meaning e2 is not rational, hence e2 is irrational.
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2024.3 Question 8

1. (y− x+3)(y+ x− 5) = 0 if and only if y− x+3 = 0, or y+ x− 5 = 0. In the first case, y = x− 3,
representing a straight line with gradient 1, and in the second case, y = −x + 5, representing a
straight line with gradient −1.

The equation represents a pair of straight lines with gradients 1 and −1 if and only if it could be
factorised into the form (y − x+ a)(y + x− b).

(y − x+ a)(y + x+ b) = y2 + xy + by − xy − x2 − bx+ ay + ax+ ab

= y2 − x2 + (a+ b)y + (a− b)x+ ab,

and p = a+ b, q = a− b, r = ab.

On one hand, if it could be factorised into this form, we have

p2 − q2 = (a+ b)2 − (a− b)2 = a2 + 2ab+ b2 − a2 + 2ab− b2 = 4ab = 4r.

On the other hand, let a = p+q
2 , b = p−q

2 , and we have

a+ b = p, a− b = q, ab =
p+ q

2

p− q

2
=

p2 − q2

4
=

4r

4
= r.

This shows that this is a necessary and sufficient condition, which finishes our proof.

2. Since the point (x, y) lies on C1, we must have y = x2, and y − x2 = 0.

Since it lies on C2, we must have x = y2 + 2sy + s(s+ 1), and y2 + 2sy + s(s+ 1)− x.

Hence,

LHS = y2 + 2sy + s(s+ 1)− x+ k(y − x2)

= 0 + k · 0
= 0

= RHS

for any real number k.

Let k = 1, by rearranging, we have

y2 − x2 + (2s+ 1)y − x+ s(s+ 1) = 0.

We notice that

(2s+ 1)2 − (−1)2 = 4s2 + 4s+ 1− 1

= 4s2 + 4s

= 4s(s+ 1),

which means that this represents a pair of straight lines with gradients 1 and −1. The four points
of intersection must lie on them.

3. By part (ii), we have a = (2s+1)−1
2 = s, and b = (2s+1)−(−1)

2 = s+ 1. This means

(y − x+ s)(y + x+ s+ 1) = 0,

and the lines are y = x− s and y = −x− s− 1.

Since a straight line may at most meet a polynomial twice, we must have y = x− s meets y = x2

at two distinct point, and y = −x− s− 1 meets y = x2 at two distinct points as well.

x2 = x− s ⇐⇒ x2 − x+ s = 0, and hence 1− 4s > 0, which shows that s < 1
4 .

x2 −−x− s− 1 ⇐⇒ x2 + x+ (s+ 1) = 0, and hence 1− 4(s+ 1) > 0, which shows that s < − 3
4 .

Hence, s < − 3
4 .
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4. The lines are y = x− s and y = −x− s− 1. Since s < − 3
4 , both lines intersect y = x2 on precisely

two points, since the discriminant for the quadratic is positive. Hence, we just have to show that
none of those four points are the same.

This could only be the case of the intersection of the intersection of the two lines, which is(
− 1

2 ,−
2s+1
2

)
. This lies on y = x2 if and only if

−2s+ 1

2
=

(
−1

2

)2

⇐⇒ −s− 1

2
=

1

4
⇐⇒ s = −3

4

which is not the case here.

Hence, C1 and C2 must intersect at four distinct points.

Eason Shao Page 425 of 430



STEP Project Year 2024 Paper 3

2024.3 Question 11

1. We notice that

LHS = r

(
2n

r

)
= r · (2n)!

r!(2n− r)!

=
(2n)!

(r − 1)!(2n− r)!
,

and

RHS = (2n+ 1− r)

(
2n

2n+ 1− r

)
= (2n+ 1− r) · (2n)!

(r − 1)!(2n+ 1− r)!

=
(2n)!

(r − 1)!(2n− r)!
.

Hence,

r

(
2n

r

)
= (2n+ 1− r)

(
2n

2n+ 1− r

)
as desired.

Summing this from r = n+ 1 to 2n, we have

2n∑
r=n+1

r

(
2n

r

)
=

2n∑
r=n+1

(2n+ 1− r)

(
2n

2n+ 1− r

)

=

n∑
r=1

(2n+ 1− (2n+ 1− r))

(
2n

2n+ 1− (2n+ 1− r)

)

=

n∑
r=1

r

(
2n

r

)
,

and hence

2n∑
r=0

r

(
2n

r

)
=

2n∑
r=1

r

(
2n

r

)

=

n∑
r=1

r

(
2n

r

)
+

2n∑
r=n+1

r

(
2n

r

)

=

2n∑
r=n+1

r

(
2n

r

)
+

2n∑
r=n+1

r

(
2n

r

)

= 2

2n∑
r=n+1

r

(
2n

r

)
,

as desired.

2. For n+ 1 ≤ x ≤ 2n, we have

P(X = x) = 2 ·
(
2n
x

)
22n

.

For x = n, we have

P(X = x) =

(
2n
n

)
22n

.
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We have n ≤ X ≤ 2n, and hence

E(X) =

2n∑
x=n

xP(X = x)

=
n
(
2n
n

)
22n

+
2

22n

2n∑
x=n+1

x

(
2n

x

)

=
n
(
2n
n

)
22n

+ 2−2n
2n∑
r=0

r

(
2n

r

)

=
n
(
2n
n

)
22n

+ 2−2n(2n)22n−1

= n+
n
(
2n
n

)
22n

= n

(
1 +

1

22n

(
2n

n

))
as desired.

3. First, we have that
1

22n

(
2n

n

)
> 0

for all positive integers n.

Taking the ratio of two consecutive terms, we have

1
22n

(
2n
n

)
1

22(n+1)

(
2(n+1)
n+1

) =
22n+2 (2n)!

n!n!

22n (2n+2)!
(n+1)!(n+1)!

= 4 · (n+ 1)2

(2n+ 2)(2n+ 1)
.

We have that the following are equivalent:

1

22n

(
2n

n

)
>

1

22(n+1)

(
2(n+ 1)

n+ 1

)
1

22n

(
2n
n

)
1

22(n+1)

(
2(n+1)
n+1

) > 1

4(n+ 1)2

(2n+ 2)(2n+ 1)
> 1

4n2 + 8n+ 4 > 4n2 + 6n+ 2

2n+ 2 > 0

and this obviously true for all positive integers n.

This means that 1
22n

(
2n
n

)
decreases as n increases.

4. The winning is given by X − n, and hence the expected winnings per pound is 1
22n

(
2n
n

)
. This is

maximised when n = 1 which gives a value of 1
2 .
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2024.3 Question 12

1. For 1 ≤ r ≤
√
2, the diagram looks as follows.

x

y

1

1

O

r

The angle between the (shallower) radius which just intersects the square and x axis is given by
arccos 1

r , and so is the one steeper and the y-axis.

Hence, the cumulative distribution function is given by

P(R ≤ r) =
shaded area

12

= shaded area

=
1

2
· r2 ·

(
π

2
− 2 arccos

1

r

)
+ 2 · 1

2
· 1 ·

√
r2 − 1

=
√
r2 − 1 +

πr2

4
− r2 arccos

1

r
,

as desired.

For 0 ≤ r ≤ 1, the diagram is as follows.
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x

y

1

1

O

r

Hence,

P(R ≤ r) = shaded area =
πr2

4
.

Hence, the cumulative distribution function is given by

P(R ≤ r) =


0, r < 0,
πr2

4 , 0 ≤ r < 1,√
r2 − 1 + πr2

4 − r2 arccos 1
r , 1 ≤ r < 2,

1, 2 ≤ r.

2. Let f be the probability density function of R. Hence, by differentiating, for 0 ≤ r ≤
√
2, it is

given by

f(r) =
d

dr
P(R ≤ r)

=


πr
2 , 0 ≤ r ≤ 1,

r√
r2−1

+ πr
2 − 2r arccos 1

r − 1√
1−( 1

r )
2
, 1 ≤ r ≤

√
2,

=

{
πr
2 , 0 ≤ r ≤ 1,
πr
2 − 2r arccos 1

r , 1 ≤ r ≤
√
2.
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Hence, the expectation is given by

E(R) =

∫ 1

0

r · πr
2

dr +

∫ √
2

1

r ·
[
πr

2
− 2r arccos

1

r

]
dr

=

∫ √
2

0

πr2

2
dr − 2

∫ √
2

1

r2 arccos
1

r
dr

=

[
πr3

6

]√2

0

− 2

3

∫ √
2

1

arccos
1

r
dr3

=
2
√
2π

6
− 2

3

[
arccos

1

r
· r3
]√2

1

+
2

3

∫ √
2

1

r3 d arccos
1

r

=

√
2π

3
− 2

3
· arccos 1√

2
· 2
√
2 +

2

3
· arccos 1 · 1 + 2

3
·
∫ √

2

1

r3 ·
(
− 1

r2

)
·

− 1√
1−

(
1
r

)2
 dr

=

√
2π

3
− 2

3
· π
4
· 2
√
2 +

2

3

∫ √
2

1

r · r√
r2 − 1

dr

=

√
2π

3
−

√
2π

3
+

2

3

∫ √
2

1

r2√
r2 − 1

dr

=
2

3

∫ √
2

1

r2√
r2 − 1

dr,

as desired.

3. To integrate this, we let r = cosh t, and hence dr
dt = sinh t. When r = 1, t = 0. When r =

√
2,

t = ln

(√
2 +

√√
2
2 − 1

)
= ln(

√
2 + 1).

Hence,

E(R) =
2

3

∫ √
2

1

r2√
r2 − 1

dr

=
2

3

∫ ln(
√
2+1)

0

cosh2 t

sinh t
· sinh tdt

=
2

3

∫ ln(
√
2+1)

0

cosh2 tdt

=
2

3

∫ ln(
√
2+1)

0

e2t + e−2t + 2

4
dt

=
1

2

[
e2t − e−2t

]ln(√2+1)

0
+

1

3
[t]

ln(
√
2+1)

0

=
1

12
·
[
(
√
2 + 1)2 − (

√
2 + 1)−2 − e2·0 + e−2·0

]
+

1

3
·
(
ln(

√
2 + 1)− 0

)
=

1

2

[
2 + 1 + 2

√
2− (

√
2− 1)2

]
+

1

3
ln(

√
2 + 1)

=
1

2
· 4
√
2 +

1

3
ln(

√
2 + 1)

=
1

3

(√
2 + ln

(√
2 + 1

))
,

as desired.
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