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2023.3 Question 1

1. The line through P and Q has gradient

aq2 − ap2

2aq − 2ap
=

q2 − p2

2(q − p)
=

p+ q

2
,

and so it has equation

y − ap2 =
1

2
(p+ q)(x− 2ap)

y =
1

2
(p+ q)x+ ap2 − ap2 − apq

y =
1

2
(p+ q)x− apq.

The line is tangent to the circle with centre (0, 3a) and radius 2a, if and only if its distance from
(0, 3a) is 2a.

The line has equation
2y − (p+ q)x+ 2apq = 0

and hence the distance is

d =
|2 · 3a− (p+ q) · 0 + 2apq|√

22 + (p+ q)2

=
|6a+ 2apq|√

4 + p2q2 + 6pq + 5

=
|2a(3 + pq)|√

(pq + 3)2

=
2a|3 + pq|
|3 + pq|

= 2a,

and so the distance from l to (0, 3a) is 2a as desired.

2. We rearrange the condition to an equation in q

p2 + 2pq + q2 = p2q2 + 6pq + 5(
p2 − 1

)
q2 + 4pq +

(
5− p2

)
= 0,

and since p2 ̸= 1, this must be a quadratic.

We examine the discriminant, ∆:

∆ = (4p)2 − 4
(
p2 − 1

) (
5− p2

)
= 16p2 − 4

(
−p4 − 5 + 6p2

)
= 4p4 − 8p2 + 20

= 4
(
p4 − 4p2 + 5

)
= 4

[(
p2 − 2

)2
+ 1
]

≥ 4 · 1
= 4

> 0,

and so ∆ > 0, meaning there will be two distinct real values of q satisfying the condition.

By Vieta’s Theorem, we have q1 + q2 = − 4p
p2−1 , and q1q2 = 5−p2

p2−1 .
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3. Notice that

(q1 + q2)
2
=

16p2

(p2 − 1)
2 ,

and

q21q
2
2 + 6q1q2 + 5 =

(
5− p2

)2
(p2 − 1)

2 +
6 ·
(
5− p2

)
(p2 − 1)

+ 5

=

(
5− p2

)2
+ 6

(
5− p2

) (
p2 − 1

)
+ 5

(
p2 − 1

)2
(p2 − 1)

2

=
25− 10p2 + p4 − 6p4 + 36p2 − 30 + 5p4 − 10p2 + 5

(p2 − 1)
2

=
16p2

(p2 − 1)
2 ,

and so (q1 + q2)
2
= q21q

2
2 + 6q1q2 + 5.

Let P
(
2ap, ap2

)
for some p ̸= 1, and let the corresponding solutions to the condition be q1, q2.

Define the points Q1

(
2aq1, aq

2
1

)
and Q2

(
2aq2, aq

2
2

)
.

The previous part of the question shows that Q1 and Q2 exists and are distinct.

The first part ensures that PQ1 and PQ2 are tangents to the circle.

But since q1 and q2 satisfies the conditions as well, we must have Q1Q2 being a tangent to the
circle as well.

Hence, triangle PQ1Q2 has all vertices on x2 = 4ay, and that all three sides are tangent to the
desired circle.

Eason Shao Page 379 of 459



STEP Project Year 2023 Paper 3

2023.3 Question 2

1. If the two curves meet at θ = α, then α must satisfy that

k(1 + sinα) = k + cosα.

Subtracting k on both sides, we have

k sinα = cosα,

and since k > 1 > 0, sinα and cosα cannot be simultaneously zero, they must both be non-zero.
Dividing through both sides by cosα gives

k tanα = 1

and hence

tanα =
1

k

as desired.

The curves are as follows.

θ = 0θ = π

θ = π
2

O k + 1kk − 1k

2k

k

C1

C2

2. The area of A is given by

[A] =
1

2
·
∫ α

0

(k(1 + sin θ))
2
dθ

=
k2

2
·
∫ α

0

(
1 + 2 sin θ + sin2 θ

)
dθ

=
k2

2
·
∫ α

0

(
1 + 2 sin θ +

1− cos 2θ

2

)
dθ

=
k2

2
·
[
3

2
· θ − 2 cos θ − 1

4
sin 2θ

]α
0

=
k2

2
·
[(

3

2
α− 2 cosα− 1

4
sin 2α

)
−
(
0− 2− 1

4
· 0
)]

=
k2

2

[
3

2
α− 2 cosα− 1

2
sinα cosα+ 2

]
=

k2

4
(3α− sinα cosα) + k2 (1− cosα) .
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3. The area of B is given by

[B] =
1

2
·
∫ π

α

(k + cos θ)
2
dθ

=
1

2
·
∫ π

α

(
k2 + 2k cos θ + cos2 θ

)
dθ

=
1

2
·
∫ π

α

(
k2 + 2k cos θ +

1 + cos 2θ

2

)
dθ

=
1

2
·
[(

k2 +
1

2

)
θ + 2k sin θ +

sin 2θ

4

]π
α

=
1

2
·
[((

k2 +
1

2

)
π + 2k · 0 + 0

4

)
−
((

k2 +
1

2

)
α+ 2k · sinα+

sin 2α

4

)]
=

1

2
·
[(

k2 +
1

2

)
(π − α)− 2k sinα− sinα cosα

2

]
=

1

4
·
(
2k2π + π − 2k2α− α− 4k sinα− sinα cosα

)
.

4. T is given by

T =
1

2
·
∫ π

0

(k + cos θ)
2
dθ

=
1

2
·
[(

k2 +
1

2

)
θ + 2k sin θ +

sin 2θ

4

]π
0

=
1

4
·
(
2k2π + π − 2k2 · 0− 0− 4k · 0− 0 · 1

)
=

π
(
2k2 + 1

)
4

.

As k → ∞, 1
k = tanα → 0+, and therefore,

α, sinα, tanα ≈ 1

k

and

cosα ≈ 1− 1

2k2
.

Therefore, considering only terms with the highest power of k

[A] =
k2

4
(3α− sinα cosα) + k2 (1− cosα)

≈ k2

4

(
3

(
1

k

)
−
(
1

k

)(
1− 1

2k2

))
+ k2

(
1−

(
1− 1

2k2

))
=

k2

4

(
2

k
+

1

2k3
+ 1

)
≈ k

2
,

and

[B] =
1

4
·
(
2k2π + π − 2k2α− α− 4k sinα− sinα cosα

)
=

1

4
·
(
2k2π + π − 2k2 · 1

k
− 1

k
− 4k · 1

k
− 1

k
·
(
1− 1

2k2

))
=

1

4
·
(
2k2π + π − 2k − 1

k
− 4− 1

k
+

1

2k3

)
≈ k2π

2
.
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Therefore,

R = [A] + [B] ≈ k2π

2

Hence,

lim
k→∞

R

T
= lim

k→∞

k2π
2

π(2k2+1)
4

= lim
k→∞

2k2

2k2 + 1

= 1

as desired.

Similarly, S is given by

S =
1

2
·
∫ π

0

(k(1 + sin θ))
2
dθ

=
k2

2
·
[
3

2
· θ − 2 cos θ − 1

4
sin 2θ

]π
0

=
k2

4
(3π − sinπ cosπ) + k2 (1− cosπ)

=
k2

4
· 3π + 2k2

=

(
2 +

3π

4

)
k2.

Hence,

lim
k→∞

R

S
= lim

k→∞

k2π
2(

2 + 3π
4

)
k2

= lim
k→∞

4π

8 + 3π
.
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2023.3 Question 3

1. We consider the distance between a± sbi and a+ b. We have

|(a± sbi)− (a+ b)| = |±sbi− b|
= |(−1± si)b|
= |−1± si||b|

=
√
1 + s2|b|

is independent of the plus or minus sign. This shows that the distances from points a± sbi to a+ b
are equal, and this means that the three points form an isosceles triangle.

Notice that the midpoint of a + sbi and a − sbi is a. Therefore, for any isosceles triangle in the
complex plane, the midpoint of the base of the isosceles triangle is represented by the complex
number a, and the vector from the midpoint of the base to the top vertex is represented by the
complex number b.

Notice that √
1 + s2|b| =

√
|b|2 + (s|b|)2

and this means s is the ratio of the length of half the base to the length of the height (represented
by b).

Re(z)

Im(z)

a

a+ b

a+ sbi

a− sbi

b

s|b|

s|b|

2. From the previous part, three points in the complex plane represent an isosceles triangle if and
only if they could be represented as a + sbi, a − sbi and a + b for some complex a, b where b ̸= 0
and positive real s (and such representation is unique).

Let z1, z2 and z3 be the roots of this equation. We notice that from Vieta’s Theorem,
z1 + z2 + z3 = 0,

z1z2 + z1z3 + z2z3 = p,

z1z2z3 = −q.

On the other hand,

z1 + z2 + z3 = (a+ sbi) + (a− sbi) + (a+ b) = 3a+ b,

z1z2 + z1z3 + z2z3 = (a+ sbi)(a− sbi) + (a+ sbi)(a+ b) + (a− sbi)(a+ b)

= a2 + s2b2 + 2a(a+ b)

= 3a2 + 2ab+ s2b2,
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and

z1z2z3 = (a+ sbi)(a− sbi)(a+ b)

= (a2 + s2b2)(a+ b)

= a3 + a2b+ s2ab2 + s2b3.

Since 3a+ b = 0, we have b = −3a, and therefore

p = 3a2 + 2ab+ s2b2

= 3a2 + 2a(−3a) + s2(−3a)2

= 3a2 − 6a2 + s2 · 9a2

= 9s2a2 − 3a2

= 3a2
(
3s2 − 1

)
,

and

q = −
(
a3 + a2b+ s2ab2 + s2b3

)
= −

(
a3 + a2(−3a) + s2a(−3a)2 + s2(−3a)3

)
= −

(
a3 − 3a3 + 9s2a3 − 27s2a3

)
= −

(
−2a3 − 18s2a3

)
= 2a3

(
9s2 + 1

)
.

Therefore,

p3

q2
=

(
3a2

(
3s2 − 1

))3
(2a3 (9s2 + 1))

2

=
27a6

(
3s2 − 1

)3
4a6 (9s2 + 1)

2

=
27
(
3s2 − 1

)3
4 (9s2 + 1)

2

for this value of s of the isosceles triangle, showing precisely that such s does exist.

3. This function is defined for x ̸= − 1
9 . Within the domain, it is positive for x > 1

3 and negative for
x < 1

3 . Therefore, as x → − 1
9 , y → −∞.

As x → ±∞, we find the asymptote by long division. We have

y =
(3x− 1)3

(9x+ 1)2

=
27x3 − 27x2 + 9x− 1

81x2 + 18x+ 1

=
1

3
x+

−33x2 + 26
3 x− 1

81x2 + 18x+ 1

=
1

3
x− 11

27
+

16x− 16
27

81x2 + 18x+ 1

and hence y = 1
3x− 11

27 is an asymptote as x → ±∞.
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Differentiating this gives us

y′ =

[
(3x− 1)3

]′
(9x+ 1)2 −

[
(9x+ 1)2

]′
(3x− 1)3

(9x+ 1)4

=
3 · 3 · (3x− 1)2(9x+ 1)2 − 2 · 9 · (9x+ 1) · (3x− 1)3

(9x+ 1)4

=
9(3x− 1)2(9x+ 1)− 18(3x− 1)3

(9x+ 1)3

=
9(3x− 1)2

(9x+ 1)3
[(9x+ 1)− 2(3x− 1)]

=
27(3x− 1)2(x+ 1)

(9x+ 1)3
.

Therefore, y′ = 0 if and only if x = 1
3 (which is also a zero), or x = −1 (which corresponds to

y = (3·(−1)−1)3

(9·(−1)+1)2 = −64
64 = −1, which is (−1,−1)).

The y-intercept is −1.

Therefore, the graph is as follows.

x

y

O

y = x
3 − 11

27

x = − 1
9

1
3

(−1,−1)
−1

4. We have shown in part (ii) that such s exists and could be the corresponding s for the isosceles
triangle represented by the three roots. Therefore, the ratio is real.

Furthermore,

p3

q2
=

27
(
3s2 − 1

)3
4 (9s2 + 1)

2 =
27

4
· (3x− 1)3

(9x+ 1)2

∣∣∣∣
x=s2

.

Therefore, since the minimum of y = (3x−1)3

(9x+1)2 for x ≥ 0 is at y = −1 when x = 0, we must have

p3

q2
≥ 27

4
· (−1) = −27

4
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as desired.
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2023.3 Question 4

1. Consider z = exp(iθ). On one hand, we have

z2n+1 = exp(i(2n+ 1)θ) = cos(2n+ 1)θ + i sin(2n+ 1)θ

and on the other hand,

z2n+1 = (cos θ + i sin θ)2n+1

=

2n+1∑
k=0

(
2n+ 1

k

)
cos2n+1−k θ sink θ · ik.

Taking the real part on both sides, we notice that even ks produce a real term for the sum, and
odd ks produce an imaginary term for the sum. Hence,

cos(2n+ 1)θ =

n∑
r=0

(
2n+ 1

2r

)
cos2n+1−2r θ sin2r θ · i2r

=

n∑
r=0

(
2n+ 1

2r

)
cos2n+1−2r θ sin2r θ · (−1)r

=

n∑
r=0

(
2n+ 1

2r

)
cos2n+1−2r θ

(
− sin2 θ

)r
=

n∑
r=0

(
2n+ 1

2r

)
cos2n+1−2r θ

(
cos2 θ − 1

)r
,

as desired.

2. From the previous part, we can conclude that for −1 ≤ x ≤ 1, we have

p(x) = 1 +

n∑
r=0

(
2n+ 1

2r

)
x2n+1−2r

(
x2 − 1

)r
and this must be the expression for p(x) for all real numbers x.

Further simplification yields

p(x) = 1 +

n∑
r=0

(
2n+ 1

2r

)
x2n+1−2r

r∑
k=0

(
r

k

)
x2k(−1)r−k

= 1 +

n∑
r=0

r∑
k=0

(
2n+ 1

2r

)(
r

k

)
(−1)r−kx2n+1+2k−2r.

For the coefficient of x2n+1, it must be the case that k = r for the contribution of the coefficient,
and hence it is equal to

n∑
r=0

(
2n+ 1

2r

)(
r

r

)
(−1)r−r =

n∑
r=0

(
2n+ 1

2r

)
.

We consider the expansion of (1 + t)2n+1. By the binomial theorem, we have

(1 + t)2n+1 =

2n+1∑
r=0

(
2n+ 1

r

)
tr =

n∑
r=0

(
2n+ 1

2r

)
t2r +

n∑
r=0

(
2n+ 1

2r + 1

)
t2r+1.

Let t = 1, and we have

22n+1 =

n∑
r=0

(
2n+ 1

2r

)
+

n∑
r=0

(
2n+ 1

2r + 1

)
.
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Let t = −1, and we have

0 =

n∑
r=0

(
2n+ 1

2r

)
(−1)2r +

n∑
r=0

(
2n+ 1

2r + 1

)
(−1)2r+1

and hence

0 =

n∑
r=0

(
2n+ 1

2r

)
−

n∑
r=0

(
2n+ 1

2r + 1

)
.

Let A =
∑n

r=0

(
2n+1
2r

)
, and B =

∑n
r=0

(
2n+1
2r+1

)
. We have A + B = 22n+1 and A − B = 0, giving

A = B = 22n.

Therefore, the coefficient of x2n+1 in the polynomial p(x) is A, which is 22n as desired.

3. We recall that

p(x) = 1 +

n∑
r=0

r∑
k=0

(
2n+ 1

2r

)(
r

k

)
(−1)r−kx2n+1+2k−2r.

For 2n+ 1 + 2k − 2r = 2n− 1, it must be the case that k = r − 1, and therefore the coefficient is
given by

n∑
r=0

(
2n+ 1

2r

)(
r

r − 1

)
(−1)r−(r−1) = −

n∑
r=0

r

(
2n+ 1

2r

)
.

What remains is to show that

n∑
r=0

r

(
2n+ 1

2r

)
= (2n+ 1)22n−2.

Notice that from the definition of the binomial coefficient

n∑
r=0

r

(
2n+ 1

2r

)
=

1

2

n∑
r=1

2r

(
2n+ 1

2r

)

=
1

2

n∑
r=1

2r · (2n+ 1)!

(2n+ 1− 2r)!(2r)!

=
1

2

n∑
r=1

(2n+ 1)!

(2n+ 1− 2r)!(2r − 1)!

=
2n+ 1

2

n∑
r=1

(2n)!

(2n+ 1− 2r)!(2r − 1)!

=
2n+ 1

2

n∑
r=1

(
2n

2r − 1

)

=
2n+ 1

2

n−1∑
r=0

(
2n

2r + 1

)
.

Similar to the previous part, consider

(1 + t)2n =

2n∑
r=0

(
2n

r

)
tr =

n∑
r=0

(
2n

2r

)
t2r +

n−1∑
r=0

(
2n

2r + 1

)
t2r+1.

Let t = 1, and we have

22n =

n∑
r=0

(
2n

2r

)
+

n−1∑
r=0

(
2n

2r + 1

)
.

Let t = −1, and we have

22n =

n∑
r=0

(
2n

2r

)
−

n−1∑
r=0

(
2n

2r + 1

)
.
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Therefore, we have
n−1∑
r=0

(
2n

2r + 1

)
= 22n−1.

Hence,

2n+ 1

2

n−1∑
r=0

(
2n

2r + 1

)
=

2n+ 1

2
· 22n−1

= (2n+ 1)22n−2,

and therefore the coefficient is given by −(2n+ 1)22n−2, as desired.

4. The coefficient of xn in q(x) must be 2n (to contribute to the x2n+1 term in p(x)).

Let ak be the coefficient of xk in q(x).

The term x2n in p(x) has zero as its coefficient, since 2n + 1 + 2k − 2r is always odd. It must be
given by x multiplied by some term with power x2n−1 in q(x)2, which is xn · xn−1 or xn−1 · xn, or
1 multiplied by some term with power x2n, which must be xn · xn. Therefore,

0 = 2anan−1 + a2n,

and hence
an−1 = −an

2
= −2n−1.

The term x2n−1 in p(x) is given by x multiplied by some term with power x2n−2 in q(x)2, which is
xn ·xn−2, xn−1 ·xn−1 or xn−2 ·xn, or 1 multiplied by some term with power x2n−1 in q(x)2, which
is xn · xn−1 or xn−1 · xn. Therefore,

−(2n+ 1)22n−2 = 2anan−2 + a2n−1 + 2anan−1,

and hence
−(2n+ 1)22n−2 = 2 · 2n · an−2 + 22n−2 − 2 · 2n · 2n−1,

which means
−(2n+ 1)2n−3 = an−2 + 2n−3 − 2n−1.

Hence,

an−2 = 2n−1 − 2n−3 − (2n+ 1)2n−3

= 2n−1 − (1 + (2n+ 1))2n−3

= 2n−1 − (2n+ 2)2n−3

= 2n−1 − 2(n+ 1)2n−3

= 2n−1 − (n+ 1)2n−2

= (2− (n+ 1))2n−2

= (1− n)2n−2,

which means the coefficient of xn−2 in q(x) is 2n−2(1− n), as desired.
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2023.3 Question 5

1. If x, y are both non-zero,

1

x
+

2

y
=

2

7

7y + 2 · 7x = 2xy

2xy − 14x− 7y = 0

2xy − 14x− 7y + 49 = 49

2x(y − 7)− 7(y − 7) = 49

(2x− 7)(y − 7) = 49.

We must have 2x− 7 ≥ 2 · 1− 7 = −5 and y − 7 ≥ 1− 7 = −6.

2x − 7 and y − 7 are both integers, and we do casework considering expressing 49 into a product
of two integers that are both not less than −6.

• 49 = 1× 49, 2x− 7 = 1 and y − 7 = 49, giving us (x, y) = (4, 56).

• 49 = 7× 7, 2x− 7 = 7 and y = 7 = 7, giving us (x, y) = (7, 14).

• 49 = 49× 1, 2x− 7 = 49 and x− 7 = 1, giving us (x, y) = (28, 8).

Since all x, y are non-zero, we can conclude that the solutions are (x, y) = (4, 56), (7, 14), (28, 8).

2. We have

p2 + pq + q2 = n2

p2 + 2pq + q2 = n2 + pq

(p+ q)2 = n2 + pq

(p+ q)2 − n2 = pq

(p+ q + n)(p+ q − n) = pq.

We must have p+ q+n > p+ q−n since n is a positive integer. We have p+ q+n > p, q > 1 > 0.
It must be the case that p+ q − n is positive as well.

Therefore, p+ q+n cannot be 1, p, q, and it must be the case that p+ q+n = pq and p+ q−n = 1.

Therefore, p+ q = n+ 1, and pq = p+ q + n = 2n+ 1.

Hence, p, q are solutions to the quadratic equation in t

t2 − (n+ 1)t+ (2n+ 1) = 0.

Solving this gives us

p, q =
(n+ 1)±

√
(n+ 1)2 − 4 · (2n+ 1)

2

=
(n+ 1)±

√
n2 − 6n− 3

2
.

We have n2 − 6n− 3 = (n− 3)2 − 12 must be a perfect square for p, q to be rational (and they are
since all integers are rational).

Consider a, b ≥ 0, a, b ∈ N such that a2 − b2 = (a+ b)(a− b) = 12.

a+ b and a− b must take the same odd-even parity, and the only possibility is therefore a+ b = 6
and a− b = 2, solving to (a, b) = (4, 2).

Therefore, n− 3 = 4, n = 7, and we solve for

p, q =
8±

√
49− 42− 3

2
= 4± 1

and (p, q) = (3, 5), (5, 3) are indeed primes, and n = 7.
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3. If p+ q − n ≥ p, then q ≥ n, and for the original equation,

LHS = p3 + q3 + 3pq2 > q3 ≥ n3 = RHS,

and hence LHS > RHS is impossible. Hence, p+ q − n < p.

It must also be the case for p+ q − n < q.

We have

p3 + q3 + 3pq2 = n3

p3 + q3 + 3pq2 + 3p2q = n3 + 3p2q

(p+ q)3 = n3 + 3p2q

(p+ q)3 − n3 = 3p2q

(p+ q − n)
[
(p+ q)2 + (p+ q) · n+ n2

]
= 3p2q.

The factors of 3p2q are (given p and q are prime),

1, 3, p, q, 3p, 3q, p2, pq, 3p2, 3pq, p2q, 3p2q,

and since p + q − n < p and p + q − n < q, it must be either the case that p + q − n = 1 or
p+ q − n = 3.

• If p+ q − n = 1, then p+ q = n+ 1, we have

(p+ q)2 + (p+ q)n+ n2 = 3p2q

(n+ 1)2 + (n+ 1)n+ n2 = 3p2q

3n2 + 3n+ 2 = 3p2q.

The left-hand side is congruent to 1 modulo 3, while the right-hand side is a multiple of 3, so
this is impossible.

• If p+ q − n = 3, p+ q = n+ 3, we have

(p+ q)2 + (p+ q)n+ n2 = p2q

(n+ 3)2 + (n+ 3)n+ n2 = p2q

3n2 + 9n+ 9 = p2q

3(n2 + 3n+ 3) = p2q.

Therefore, 3 | p2q, and hence 3 | p or 3 | q, and hence either p or q must be 3 and the other one
is n. However, we have concluded that p+q−n < p ⇐⇒ q < n and p+q−n < q ⇐⇒ p < n,
which makes this impossible.

This shows that it is impossible for primes p, q and integer n such that p3 + q3 + 3pq2 = n3, which
shows that there are no primes p, q such that p3 + q3 + 3pq2 is the cube of an integer.
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2023.3 Question 6

1. Since ex =
∑∞

k=0
xk

k! , we have e−x =
∑∞

k=0
(−x)k

k! , and hence

cosh2 x =
(ex + e−x)

2

4

=
e2x + e−2x + 2

4

=

∑∞
k=0

(2x)k

k! +
∑∞

k=0
(−2x)k

k! + 2

4

=
2
∑∞

k=0
(2x)2k

k! + 2

4

≥
2 · (2x)0

0! + 2 · (2x)2

2! + 2

4

=
4 + 4x2

4

= 1 + x2,

so
cosh2 x ≥ 1 + x2.

Since
cosh2 x ≥ 1 + x2 > 0,

we have

0 <
1

1 + x2
≤ 1

cosh2 x
.

By differentiating, we have

f ′(x) =
1

1 + x2
− 1

cosh2 x

≥ 1

1 + x2
− 1

1 + x2

= 0,

which shows f ′(x) ≥ 0, meaning f is increasing.

Notice that f ′(x) = 0 if and only if x = 0 (since the equal sign takes if and only if all the remaining
even powers of x sum to zero, which is possible if and only if they are all zero). Also, since both
functions are odd, we have f(x) = −f(−x).

As x → ±∞, f(x) → ±π
2 ∓ 1 respectively.
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x

y

O

y = π
2 − 1

y = −π
2 + 1

2. (a) We notice that g(0) = arctan 0 − 1
2π tanh 0 = 0, and that as x → ∞, g(x) → π

2 − 1
2π · 1 = 0

as well.

Since g is not identically zero, it must be the case that it has a stationary point on (0,∞).

Also, notice that g is odd, so the stationary points come in pairs, and there must be at least
two of those.

(b) By differentiating,

d

dx

[(
1 + x2

)
sinhx− x coshx

]
= 2x sinhx+

(
1 + x2

)
coshx− coshx− x sinhx

= x sinhx+ x2 coshx.

If x ≥ 0, then sinhx ≥ 0 and coshx ≥ 0, and hence the derivative is non-negative, meaning
this function is non-decreasing.

Therefore, for x ≥ 0,(
1 + x2

)
sinhx− x coshx ≥

(
1 + 02

)
sinh 0− 0 · cosh 0 = 0

which shows that it is indeed non-negative, as desired.

(c) By differentiating, we have

d

dx

cosh2 x

1 + x2
=

2 coshx sinhx
(
1 + x2

)
− 2x cosh2 x

(1 + x2)
2 .

Since the denominator is always positive, showing that it is increasing for x ≥ 0 is equivalent
to showing that

2 coshx sinhx
(
1 + x2

)
− 2x cosh2 x = 2 coshx

[
sinhx(1 + x2)− x coshx

]
is non-negative. From the previous part, the part within the brackets is non-negative, and
coshx ≥ 0. Therefore, the derivative is non-negative, and this is an increasing function.
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(d) By differentiating g, we have

g′(x) =
1

1 + x2
− π

2
· 1

cosh2 x

=
2 cosh2 x− π

(
1 + x2

)
2 (1 + x2) cosh2 x

.

We first note that g′(0) ̸= 0 since the numerator evaluates to 2− π.

Since g is odd, the curve has exactly two stationary points if and only if there is exactly one
stationary point on (0,∞).

The curve has a stationary point if and only if

2 cosh2 x− π
(
1 + x2

)
= 0,

if and only if
cosh2 x

1 + x2
=

π

2
.

Since the left-hand side is increasing (and non-constant) for x ≥ 0, there is at most one
solution to this equation for x ≥ 0.

From part (a), there is at least one stationary point for x > 0.

Together, this means that there is precisely one stationary point for x > 0, and therefore g
has precisely two stationary points.

(e) The graph is as follows.

x

y

O
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2023.3 Question 7

1. Let u =
√
x, we have x = u2, and hence dx = 2udu.

When x = 0, u = 0, and when x = 1, u = 1.

Therefore, ∫ 1

0

f
(√

x
)
dx =

∫ 1

0

f(u) · 2udu

= 2

∫ 1

0

uf(u) du

= 2

∫ 1

0

xf(x) dx.

2. We have ∫ 1

0

(g(x))
2
dx =

∫ 1

0

g
(√

x
)
dx− 1

3

= 2

∫ 1

0

xg(x) dx−
∫ 1

0

x2 dx,

and hence ∫ 1

0

[
(g(x))

2 − 2xg(x) + x2
]
dx = 0∫ 1

0

(g(x)− x)
2
dx = 0.

We have (g(x)− x)
2 ≥ 0 for all 0 ≤ x ≤ 1, and since g is continuous, we must have g(x) − x = 0

for all 0 ≤ x ≤ 1 for the integral to evaluate to 0.

Hence, g(x) = x for 0 ≤ x ≤ 1.

3. Using integration by parts, we have∫ 1

0

h(x) dx = [xh(x)]
1
0 −

∫ 1

0

xdh(x)

= 1 · h(1)− 0 · h(0)−
∫ 1

0

xh′(x) dx

= h(1)−
∫ 1

0

xh′(x) dx.

Hence, ∫ 1

0

(h′(x))
2
dx = 2h(1)− 2

∫ 1

0

h(x) dx− 1

3

= 2h(1)− 2

[
h(1)−

∫ 1

0

xh′(x) dx

]
− 1

3

= 2

∫ 1

0

xh′(x) dx− 1

3

= 2

∫ 1

0

xh′(x) dx−
∫ 1

0

x2 dx.

Therefore, similar to the previous part, we have h′(x) = x for 0 ≤ x ≤ 1, and hence h(x) =
x2

2 + h(0) = x2

2 for 0 ≤ x ≤ 1.
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4. First, we notice that ∫ 1

0

e−ax dx = −1

a

[
e−ax

]1
0

= −1

a
·
[
e−a − 1

]
= −e−a

a
+

1

a
.

Hence, ∫ 1

0

eax (k(x))
2
dx = 2

∫ 1

0

k(x) dx−
∫ 1

0

e−ax dx+
1

a
− 1

a2
− 1

4∫ 1

0

[
eax (k(x))

2 − 2k(x) + e−ax
]
dx = − 1

a2
+

1

a
− 1

4∫ 1

0

e−ax
[
e2ax (k(x))

2 − 2eaxk(x) + 1
]
dx = −

(
1

a
− 1

2

)2

∫ 1

0

e−ax (eaxk(x)− 1)
2
dx = −

(
1

a
− 1

2

)2

.

Since e−ax > 0, and (eaxk(x)− 1)
2 ≥ 0, the integrand must be non-negative, and hence∫ 1

0

e−ax (eaxk(x)− 1)
2
dx ≥ 0,

meaning (
1

a
− 1

2

)2

≤ 0.

However, since this is a square, it is non-negative, and it must be the case that
(
1
a − 1

2

)2
= 0,

giving 1
a = 1

2 , and hence a = 2.

Therefore, ∫ 1

0

e−ax (eaxk(x)− 1)
2
dx = 0,

and since the integrand is continuous and non-negative over the interval, it must be zero everywhere
for 0 ≤ x ≤ 1, and hence

eaxk(x)− 1 = 0,

giving
k(x) = e−ax = e−2x

for 0 ≤ x ≤ 1.
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2023.3 Question 8

1. By differentiating, we have
f ′(x) = e−x − xe−x = e−x − f(x),

and
f ′′(x) = −e−x − f ′(x).

Hence,

d2y

dx2
+ 2

dy

dx
+ y = f ′′(x) + 2f ′(x) + f(x)

= −e−x − f ′(x) + f ′(x) + e−x − f(x) + f(x)

= 0

as desired.

Evaluating y and y′ at x = 0 gives us

y|x=0 = f(0) = 0 · e−0 = 0

and
y′|x=0 = f ′(0) = e−0 − f(0) = 1− 0 = 1.

For the final part, we factorise f ′(x) to get f ′(x) = (1− x)e−x.

e−x > 0 for all x. Therefore, for x ≤ 1, 1− x ≥ 0, and hence f ′(x) ≥ 0.

2. We let g1(x) = f(x) = xe−x, and we can immediately see that this differential equation is satisfied
by x ≤ 1.

For y = g2(x) where x ≥ 1, we notice g2(1) = g1(1) = 1 · e−1 = 1
e , and g′2(1) = g′1(1) = f ′(1) =

e−1 − f(1) = 1
e − 1

e = 0.

If g′2(x) ≥ 0 for x ≥ 1, then g2 and g1 satisfies the same differential equation and boundary
conditions (at x = 1), which means they are the same solution.

However, this is impossible since g′1(x) < 0 for x > 1.

Therefore, it must be the case that g′2(x) ≤ 0 for x ≥ 1, and hence we have g′′2 (x)−2g′2(x)+g2(x) = 0
as our differential equation.

The characteristic equation solves to λ1,2 = 1, and hence the general solution to g2 is g2(x) =
(A+Bx)ex.

By differentiating, we have

g′2(x) = Bex + (A+Bx)ex = Bex + g2(x).

Considering the boundary conditions, we first have g2(1) =
1
e , meaning that (A + B)e = 1

e , and
hence A+B = e−2.

We have as well g′2(1) = 0, and hence 0 = B · e+ 1
e , giving us B = −e−2.

Therefore, A = 2e−2, and hence

g2(x) =
(
2e−2 − e−2x

)
ex

= e−2(2− x)ex

= (2− x)ex−2.

3. We notice that g2(x) = g1(2−x), and hence g2(1+x) = g1(1−x). This means they are symmetric
about the line x = 1.
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4. We first consider the range that x is in. We replace x with c− x to acquire

r ≤ c− x ≤ s ⇐⇒ −r ≥ −c+ x ≥ −s

⇐⇒ −r + c ≥ x ≥ −s+ c

⇐⇒ −s+ c ≤ x ≤ −r + c.

In other words,
x ∈ [−s+ c,−r + c] ⇐⇒ c− x ∈ [r, s].

If y = k(c− x), then we have y′ = (−1) · k′(c− x), and y′′ = (−1)2 · k′′(c− x) = k′′(c− x).

Therefore,

d2y

dx2
− p

dy

dx
+ qy = k′′(c− x) + pk′(c− x) + qk(c− x)

= k′′(t) + pk′(t) + qk(t)

for t = c− x ∈ [r, s].

Since y = k(x) is a solution to the original differential equation for r ≤ x ≤ s, we must have
k′′(t) + pk′(t) + qk(t) = 0, and therefore y = k(c − x) satisfies the new differential equation for
−s+ c ≤ x ≤ −r + c.

5. By differentiating h, we have

h′(x) = −e−x sinx+ e−x cosx = e−x(cosx− sinx).

Therefore,

h′
(
1

4
π

)
= e−

1
4π
(
cos

π

4
− sin

π

4

)
= e−

1
4π

(√
2

2
−

√
2

2

)
= 0.

Similarly,

h′
(
−3

4
π

)
= e

3
4π

(
−
√
2

2
−

(
−
√
2

2

))
= 0.

For x ∈
[
− 3

4π,
1
4π
]
, the differential equation satisfied by h without the absolute value sign is

d2y

dx2
+ 2

dy

dx
+ 2y = 0

since h′(x) ≥ 0.

(a) Let c = π
2 . For x ∈

[
π
2 − π

4 ,
π
2 + 3π

4

]
=
[
π
4 ,

5π
4

]
, by the previous lemma, y = h

(
π
2 − x

)
must

be a solution to
d2y

dx2
− 2

dy

dx
+ 2y = 0.

Notice that
y′ = −h′

(π
2
− x
)
,

and that x ∈
[
π
4 ,

5π
4

]
⇐⇒ π

2 − x ∈
[
− 3π

4 , π
4

]
, and hence h′ (π

2 − x
)
≥ 0, which means y′ ≤ 0.

Therefore, in x ∈
[
1
4π,

5
4π
]
, y = h

(
π
2 − x

)
satisfies

d2y

dx2
+ 2

∣∣∣∣dydx
∣∣∣∣+ 2y = 0,

which is the original differential equation.
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We show next that this is continuously differentiable at x = 1
4π.

It is continuous since

h

(
1

4
π

)
= h

(
π

2
− 1

4
π

)
= h

(
1

4
π

)
.

We have h′(x)|x= 1
4π

= 0, and

−h′
(π
2
− x
)∣∣∣

x= 1
4π

= −h′
(π
4

)
= 0,

so it is continuously differentiable at 1
4π.

Hence,

y = h
(π
2
− x
)

= ex−
π
2 sin

(π
2
− x
)

= ex−
π
2 cosx,

for x ∈
[
1
4π,

5
4π
]
.

(b) As shown above, for x ∈
[
1
4π,

5
4π
]
, y = h

(
π
2 − x

)
satisfies

d2y

dx2
− 2

dy

dx
+ 2y = 0.

Let c = 5π
2 . For x ∈

[
5π
2 − 5

4π,
5π
2 − 1

4π
]
=
[
5
4π,

9
4π
]
,

y = h

(
π

2
−
(
5π

2
− x

))
= h(x− 2π)

satisfies
d2y

dx2
+ 2

dy

dx
+ 2y = 0.

We have

y′ = h′(x− 2π) = h′
(
π

2
−
(
5π

2
− x

))
,

and x ∈
[
5
4π,

9
4π
]
⇐⇒ 5

2π − x ∈
[
1
4π,

5
4π
]
, and this therefore means h′ (π

2 −
(
π
2 − x

))
≥ 0.

Hence, in x ∈
[
5
4π,

9
4π
]
, y = h(x− 2π) satisfies

d2y

dx2
+ 2

∣∣∣∣dydx
∣∣∣∣+ 2y = 0.

We show next that this is continuously differentiable at x = 5
4π.

It is continuous since

h

(
π

2
− 5

4
π

)
= h

(
−3

4
π

)
= h

(
5

4
π − 2π

)
.

We have
h′
(π
2
− x
)∣∣∣

x= 5
4π

= − h′(x)|x=− 3
4π

= −0 = 0,

and
h′(x− 2π)|x= 5

4π
= h′(x)|x=− 3

4π
= 0,

and so it is continuously differentiable at x = 5
4π.

Therefore,

y = h(x− 2π)

= e−x+2π sin (x− 2π)

= e2π−x sinx

for x ∈
[
5
4π,

9
4π
]
.
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2023.3 Question 11

N∑
k=1

k + 1

k!
· xk =

N∑
k=1

k

k!
· xk +

N∑
k=1

xk

k!

=

N∑
k=1

1

(k − 1)!
· xk +

N∑
k=0

xk

k!
− x0

0!

=

N−1∑
k=0

1

k!
· xk+1 +

N∑
k=0

xk

k!
− 1

= x

N−1∑
k=0

xk

k!
+

N∑
k=0

xk

k!
− 1.

We let N → ∞. Using the Maclaurin Expansion for ex, we have

∞∑
k=0

xk

k!
= ex,

and hence
∞∑
k=1

k + 1

k!
· xk = xex + ex − 1 = (x+ 1)ex − 1.

1. We have Y ∼ Po(n). Let Xk be the outcome of a k-sided die, i.e. Xk ∼ U(k). WE must have
1 ≤ Xk ≤ k. The random variable D can be defined as

D =

{
0, Y = 0,

Xk, Y = k.

(a)

P(D = 0) = P(Y = 0)

= e−n · n
0

0!
= e−n.

(b) For d ≥ 1, we have

P(D = d) =

∞∑
k=d

P(Xk = d, Y = k)

=

∞∑
k=d

P(Xk = d) P(Y = k)

=

∞∑
k=d

1

k
· e−n · n

k

k!

=

∞∑
k=d

(
1

k
· n

k

k!
· e−n

)
.

Hence,

E(D) =

∞∑
d=0

dP(D = d)

=

∞∑
d=1

dP(D = d)

=

∞∑
d=1

[
d

∞∑
k=d

(
1

k
· n

k

k!
· e−n

)]
.
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This summation is for

d ·
(
1

k
· n

k

k!
· e−n

)
over the set

(d, k) ∈ {(n,m) | n ≥ 1,m ≥ n}
= {(n,m) | 1 ≤ n ≤ m}
= {(n,m) | m ≥ 1, n ≤ m}.

Therefore,

E(D) =

∞∑
d=1

[
d

∞∑
k=d

(
1

k
· n

k

k!
· e−n

)]

=
∑

(d,k)∈{(n,m)|n≥1,m≥n}

d ·
(
1

k
· n

k

k!
· e−n

)

=
∑

(d,k)∈{(n,m)|m≥1,n≤m}

d ·
(
1

k
· n

k

k!
· e−n

)

=

∞∑
k=1

k∑
d=1

d ·
(
1

k
· n

k

k!
· e−n

)

=

∞∑
k=1

[
1

k
· n

k

k!
· e−n ·

k∑
d=1

d

]
.

(c)

E(D) =

∞∑
k=1

[
1

k
· n

k

k!
· e−n ·

k∑
d=1

d

]

=

∞∑
k=1

[
1

k
· n

k

k!
· e−n · k(k + 1)

2

]

=
e−n

2

∞∑
k=1

nk(k + 1)

k!

=
e−n

2
[(n+ 1) · en − 1]

=
1

2

[
e−n · (n+ 1) · en − e−n

]
=

1

2

[
(n+ 1)− e−n

]
as desired.

2. Xk ∼ Po(k) for k = 1, 2, · · · , n. Let Yn be the outcome of an n-sided die, i.e. Yn ∼ U(n). Therefore,
Z = Xk if Yn = k.
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(a) We have

P(Z = 0) =

n∑
k=1

P(Xk = 0, Yn = k)

=

n∑
k=1

P(Xk = 0)P(Yn = k)

=

n∑
k=1

e−k · k
0

0!
· 1
n

=
1

n
·

n∑
k=1

e−k

=
1

n
·
1−

(
e−1
)n

1− e−1
· e−1

=
e−1

n
· 1− e−n

1− e−1
.

(b) For z ≥ 1, we have

P(Z = z) =

n∑
k=1

P(Xk = z, Yn = k)

=

n∑
k=1

P(Xk = z) P(Yn = k)

=
1

n
·

n∑
k=1

e−k · k
z

z!

=
1

nz!

n∑
k=1

e−kkz.
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Hence,

E(Z) =

∞∑
z=0

z P(Z = z)

=

∞∑
z=1

z P(Z = z)

=

∞∑
z=1

[
1

n(z − 1)!
·

n∑
k=1

e−k · kZ
]

=
1

n

∞∑
z=1

[
1

(z − 1)!

n∑
k=1

e−k · kz
]

=
1

n

∞∑
z=1

n∑
k=1

(
1

(z − 1)!
· e−k · kz

)

=
1

n

n∑
k=1

∞∑
z=1

(
1

(z − 1)!
· e−k · kz

)

=
1

n

n∑
k=1

[
e−k · k ·

∞∑
z=1

kz−1

(z − 1)!

]

=
1

n

n∑
k=1

[
e−k · k ·

∞∑
z=0

kz

z!

]

=
1

n

n∑
k=1

[
e−k · k · ek

]
=

1

n

n∑
k=1

k

=
1

n
· n(n+ 1)

2

=
n+ 1

2
.

Therefore, subtracting gives us

E(Z)− E(D) =
n+ 1

2
− 1

2
·
(
n+ 1− e−n

)
=

1

2
e−n

> 0.

Therefore, E(Z) > E(D) as desired.
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2023.3 Question 12

1. There are
(
2n
2k

)
ways to select the socks in total.

All 2k socks must be from different pairs of socks, so we have to select 2k pairs of socks from the
n pairs available, giving us

(
n
2k

)
options.

Out of those 2k pairs, one of the two is selected, which gives 22k.

Therefore, the probability is given by

P =

(
n
2k

)
· 22k(

2n
2k

) .

2. There are r pairs of socks, and 2k − 2r = 2(k − r) socks that do not form any pairs (single).

This gives us
(
n
r

)
to select the r pairs of socks,

(
n−r

2(k−r)

)
to select the 2(k − r) pairs from the

remaining n− r pairs. Finally, there is a factor of 22(k−r) ways to select one sock out of the n− r
pair.

Hence,

P(Xn,k = r) =

(
n
r

)(
n−r

2(k−r)

)
22(k−r)(

2n
2k

)
as desired, for 0 ≤ r ≤ k.

3. By expanding out the binomial coefficients, we have

P(Xn,k = r) =

n!
(n−r)!r! ·

(n−r)!
(2(k−r))!((n−r)−2(k−r))!

(2n)!
(2k)!(2(n−k))!

· 22(k−r)

=
n!(2k)!(2(n− k))!

(2n)!r!(2(k − r))!(n+ r − 2k)!
· 22(k−r),

and hence

P(Xn−1,k−1 = r − 1)

=
(n− 1)!(2(k − 1))!(2((n− 1)− (k − 1)))!

(2(n− 1))!(r − 1)!(2((k − 1)− (r − 1)))!((n− 1) + (r − 1)− 2(k − 1))!
· 22((k−1)−(r−1))

=
(n− 1)!(2k − 2)!(2(n− k))!

(2n− 2)!(r − 1)!(2(k − r))!(n+ r − 2k)!
· 22(k−r).

To show that

r · P(Xn,k = r) =
k(2k − 1)

2n− 1
· P(Xn−1,k−1 = r − 1),

it is equivalent to showing that

r · n!(2k)!
(2n)!r!

=
k(2k − 1)

2n− 1
· (n− 1)!(2k − 2)!

(2n− 2)!(r − 1)!

r · n(2k)(2k − 1)

(2n)(2n− 1)r
=

k(2k − 1)

2n− 1

n(2k)

2n
= k

2nk = 2nk

which is true.

Therefore, we have

r · P(Xn,k = r) =
k(2k − 1)

2n− 1
· P(Xn−1,k−1 = r − 1)

as desired.
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Therefore, the expectation can be simplified as

E(Xn,k) =

k∑
r=0

rP(Xn,k = r)

=

k∑
r=1

rP(Xn,k = r)

=

k∑
r=1

k(2k − 1)

2n− 1
P(Xn−1,k−1 = r − 1)

=
k(2k − 1)

2n− 1

k∑
r=1

P(Xn−1,k−1 = r − 1)

=
k(2k − 1)

2n− 1

k−1∑
r=0

P(Xn−1,k−1 = r − 1)

=
k(2k − 1)

2n− 1
· 1

=
k(2k − 1)

2n− 1

since 0 ≤ Xn,k ≤ k, 0 ≤ Xn−1,k−1 ≤ k − 1 and that they can only take integer values.

Eason Shao Page 405 of 459


