2021 Paper 3

2021.3.1	uestion 1	321
2021.3.2	uestion $2 \ldots $	323
2021.3.3	uestion 3	326
2021.3.4	uestion 4	328
2021.3.5	uestion 5	330
2021.3.6	uestion 6	334
2021.3.7	uestion 7	337
2021.3.8	uestion 8	339
2021.3.11	uestion 11	342
2021.3.12	uestion 12	344

1. By using the chain rule, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}$$

$$= \frac{12\cos t - 12\sin^2 t\cos t}{12\cos^2 t\sin t}$$

$$= \frac{\cos t - \sin^2 t\cos t}{\cos^2 t\sin t}$$

$$= \frac{1 - \sin^2 t}{\cos t\sin t}$$

$$= \frac{\cos^2 t}{\cos t\sin t}$$

$$= \frac{\cos t}{\sin t}$$

$$= \cot t.$$

Hence, at $t = \varphi$, the normal of this curve has gradient $-\tan\varphi$, and hence it has equation

$$y - (12\sin\varphi - 4\sin^3\varphi) = -\tan\varphi \left(x - (-4\cos^3\varphi)\right)$$
$$y - 12\sin\varphi + 4\sin^3\varphi = -\tan\varphi x - 4\cos^3\varphi \tan\varphi$$
$$\cos\varphi y - 12\sin\varphi\cos\varphi + 4\sin^3\varphi\cos\varphi = -\sin\varphi x - 4\cos^3\varphi\sin\varphi$$
$$\sin\varphi x + \cos\varphi y = 12\sin\varphi\cos\varphi - 4\sin^3\varphi\cos\varphi - 4\cos^3\varphi\sin\varphi$$
$$\sin\varphi x + \cos\varphi y = 4\sin\varphi\cos\varphi \left(3 - \sin^2\varphi - \cos^2\varphi\right)$$
$$\sin\varphi x + \cos\varphi y = 8\sin\varphi\cos\varphi.$$

The curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4$ can be parametrised as $x = 8\cos^3 t$ and $y = 8\sin^3 t$:

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = \left(8\cos^3 t\right)^{\frac{2}{3}} + \left(8\sin^3 t\right)^{\frac{2}{3}}$$
$$= 4\cos^2 t + 4\sin^2 t$$
$$= 4.$$

Hence, the gradient of the tangent at a point is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\,\mathrm{d}t}{\mathrm{d}x/\,\mathrm{d}t}$$
$$= \frac{24\sin^2 t\cos t}{-24\cos^2 t\sin t}$$
$$= -\tan t,$$

and the equation of the tangent at the point $t = \varphi$ is

$$y - 8\sin^{3}\varphi = -\tan\varphi \left(x - 8\cos^{3}\varphi\right)$$
$$\cos\varphi y - 8\sin^{3}\varphi \cos\varphi = -\sin\varphi x + 8\cos^{3}\varphi \sin\varphi$$
$$\sin\varphi x + \cos\varphi y = 8\sin\varphi \cos\varphi \left(\sin^{2}\varphi + \cos^{2}\varphi\right)$$
$$\sin\varphi x + \cos\varphi y = 8\sin\varphi \cos\varphi,$$

which shows the normal to the original curve is the tangent to this new curve at $(8\cos^3\varphi, 8\sin^3\varphi)$.

2. By using the chain rule, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}$$
$$= \frac{\cos t - \cos t + t\sin t}{-\sin t + \sin t + t\cos t}$$
$$= \frac{t\sin t}{t\cos t}$$
$$= \tan t.$$

Hence, at $t = \varphi$, the normal of this curve has gradient $-\cot \varphi$, and hence it has equation

$$\begin{aligned} y - (\sin \varphi - \varphi \cos \varphi) &= -\cot \varphi \left(x - (\cos \varphi + \varphi \sin \varphi) \right) \\ \sin \varphi y - \sin^2 \varphi + \varphi \sin \varphi \cos \varphi &= -\cos \varphi x + \cos^2 \varphi + \varphi \sin \varphi \cos \varphi \\ \cos \varphi x + \sin \varphi y &= \sin^2 \varphi + \cos^2 \varphi \\ \cos \varphi x + \sin \varphi y &= 1. \end{aligned}$$

The distance of this normal to the origin is

$$\frac{\left|\cos\varphi\cdot0+\sin\varphi\cdot0-1\right|}{\sqrt{\cos^{2}\varphi+\sin^{2}\varphi}}=1,$$

which is a constant, and hence this curve is tangent to the unit circle $x^2 + y^2 = 1$.

1. For the first row/component in $\hat{\mathbf{i}}$,

$$\begin{pmatrix} 1 & -x & x \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 1 \cdot a + (-x) \cdot b + x \cdot c$$

$$= a + \frac{-ab}{b-c} = \frac{ac}{b-c}$$

$$= a + \frac{ac-ab}{b-c}$$

$$= a + (-a)$$

$$= 0,$$

and this is similar for the remaining row and components. Hence, we have

$$\begin{pmatrix} 1 & -x & x \\ y & 1 & -y \\ -z & z & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

as desired.

If the matrix

$$\begin{pmatrix} 1 & -x & x \\ y & 1 & -y \\ -z & z & 1 \end{pmatrix}$$

is invertible, then we must have

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & -x & x \\ y & 1 & -y \\ -z & z & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

which is impossible, since a, b and c are distinct.

Hence, this matrix is not invertible, and it must have a zero-determinant, meaning

$$\begin{split} 0 &= \det \begin{pmatrix} 1 & -x & x \\ y & 1 & -y \\ -z & z & 1 \end{pmatrix} \\ &= 1 \cdot 1 \cdot 1 + (-x) \cdot (-y) \cdot (-z) + x \cdot y \cdot z - 1 \cdot (-y) \cdot z - (-x) \cdot y \cdot 1 - x \cdot 1 \cdot (-z) \\ &= 1 - xyz + xyz + yz + xy + xz \\ &= xy + yz + zx + 1, \end{split}$$

and hence

$$xy + yz + zx = -1.$$

Since $(x + y + z)^2 \ge 0$, we have

$$0 \le (x+y+z)^2$$

= $x^2 + y^2 + z^2 + 2(xy+yz+zx)$
= $\frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{c^2}{(a-b)^2} + 2 \cdot (-1),$

and hence

$$\frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{c^2}{(a-b)^2} \ge 2,$$

as desired.

2. Consider the matrix

$$\begin{pmatrix} -2 & x & x \\ y & -2 & y \\ z & z & -2, \end{pmatrix}$$

and for the first row/component in $\mathbf{\hat{i}},$

$$\begin{pmatrix} -2 & x & x \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = (-2)a + bx + cx$$
$$= (-2)a + (b + c)x$$
$$= (-2)a + 2a$$
$$= 0,$$

and similarly in the second and third rows/components, and hence

$$\begin{pmatrix} -2 & x & x \\ y & -2 & y \\ z & z & -2, \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

By similar argument as before, this matrix must have a zero determinant as well, and hence

$$0 = \det \begin{pmatrix} -2 & x & x \\ y & -2 & y \\ z & z & -2, \end{pmatrix}$$

= (-2)(-2)(-2) + xyz + xyz - (-2)yz - xy(-2) - x(-2)z
= -8 + 2xyz + 2xy + 2yz + 2zx,

and hence

$$xyz + xy + yz + zx = 4,$$

as desired.

Hence, consider

Since a, b, c are all positive real numbers, x, y, z are as well, and hence x + y + z > 0, giving

$$(x+1)(y+1)(z+1) > 5,$$

which means

$$\frac{2a+b+c}{b+c}\cdot\frac{a+2b+c}{a+c}\cdot\frac{a+b+2c}{a+b}>5$$

and hence

$$(2a+b+c)(a+2b+c)(a+b+2c) > 5(b+c)(c+a)(a+b)$$

as desired.

Furthermore, notice that

$$x + y + z = \frac{2a}{b+c} + \frac{2b}{c+a} + \frac{2c}{a+b}$$

$$> \frac{2a}{a+b+c} + \frac{2b}{a+b+c} + \frac{2c}{a+b+c}$$

$$= \frac{2(a+b+c)}{a+b+c}$$

$$= 2.$$

Hence,

$$(x+1)(y+1)(z+1) > 7,$$

which means

$$\frac{2a+b+c}{b+c}\cdot \frac{a+2b+c}{a+c}\cdot \frac{a+b+2c}{a+b}>7,$$

and hence

$$(2a+b+c)(a+2b+c)(a+b+2c) > 7(b+c)(c+a)(a+b)$$

as desired.

1. Notice that

$$\begin{split} \text{LHS} &= \frac{1}{2} \left(I_{n+1} + I_{n-1} \right) \\ &= \frac{1}{2} \left(\int_{0}^{\beta} (\sec x + \tan x)^{n+1} \, \mathrm{d}x + \int_{0}^{\beta} (\sec x + \tan x)^{n-1} \, \mathrm{d}x \right) \\ &= \frac{1}{2} \int_{0}^{\beta} (\sec x + \tan x)^{n-1} \left[(\sec x + \tan x)^{2} + 1 \right] \, \mathrm{d}x \\ &= \frac{1}{2} \int_{0}^{\beta} (\sec x + \tan x)^{n-1} \left(\sec^{2} x + \tan^{2} x + 2 \sec x \tan x + 1 \right) \, \mathrm{d}x \\ &= \frac{1}{2} \int_{0}^{\beta} (\sec x + \tan x)^{n-1} \cdot 2 \left(\sec^{2} x + \sec x \tan x \right) \, \mathrm{d}x \\ &= \int_{0}^{\beta} (\sec x + \tan x)^{n-1} \, \mathrm{d}(\sec x + \tan x) \\ &= \frac{1}{n} \left[(\sec x + \tan x)^{n} \right]_{0}^{\beta} \\ &= \frac{1}{n} \left[(\sec \beta + \tan \beta)^{n} - (\sec 0 + \tan 0)^{n} \right) \\ &= \frac{1}{n} \left((\sec \beta + \tan \beta)^{n} - 1 \right) \\ &= \text{RHS}, \end{split}$$

as desired.

To show the final part, we would like to show that

$$I_n < \frac{1}{2} \left(I_{n+1} + I_{n-1} \right) = \frac{1}{n} \left(\left(\sec \beta + \tan \beta \right)^n - 1 \right),$$

which is equivalent to showing

$$I_{n+1} + I_{n-1} - 2I_n > 0.$$

$$I_{n+1} + I_{n-1} - 2I_n$$

$$= \int_0^\beta (\sec x + \tan x)^{n+1} \, \mathrm{d}x + \int_0^\beta (\sec x + \tan x)^{n-1} \, \mathrm{d}x - 2\int_0^\beta (\sec x + \tan x)^n \, \mathrm{d}x$$

$$= \int_0^\beta (\sec x + \tan x)^{n-1} \left(2 \sec^2 x + 2 \sec x \tan x - 2 \sec x - 2 \tan x\right)$$

$$= \int_0^\beta (\sec x + \tan x)^{n-1} \left(\sec^2 x + \tan^2 x + 2 \sec x \tan x - 2 \sec x - 2 \tan x + 1\right)$$

$$= \int_0^\beta (\sec x + \tan x)^{n-1} \left[(\sec x + \tan x)^2 - 2 (\sec x + 2 \tan x) + 1\right]$$

$$= \int_0^\beta (\sec x + \tan x)^{n-1} \left[(\sec x + \tan x) - 1)^2\right].$$

For $0 \le x < \frac{\pi}{2}$, sec x > 0, $\tan x > 0$, and so $\sec x + \tan x > 0$, $(\sec x + \tan x)^{n-1} > 0$. Also, $\sec x = \frac{1}{\cos x} > \frac{1}{1} = 1$, and hence $\sec x + \tan x - 1 > 0$, so $((\sec x + \tan x) - 1)^2 > 0$. Hence, the integrand is greater than 0 on $(0, \beta) \subseteq (0, \frac{\pi}{2})$.

This shows that the desired equation is greater than 0, and hence, we have the desired inequality as desired.

2. Notice that

$$\frac{1}{2} \left(J_{n+1} + J_{n-1} \right) = \frac{1}{2} \int_{0}^{\beta} (\sec x \cos \beta + \tan x)^{n-1} \left[(\sec x \cos \beta + \tan x)^{2} + 1 \right] dx$$

$$= \frac{1}{2} \int_{0}^{\beta} (\sec x \cos \beta + \tan x)^{n-1} \left[\sec^{2} x \cos^{2} \beta + \tan^{2} x + 2 \sec x \tan x \cos \beta + 1 \right] dx$$

$$= \frac{1}{2} \int_{0}^{\beta} (\sec x \cos \beta + \tan x)^{n-1} \left(\sec^{2} x \cos^{2} \beta + \sec^{2} x + 2 \sec x \tan x \cos \beta \right) dx$$

$$= \frac{1}{2} \int_{0}^{\beta} (\sec x \cos \beta + \tan x)^{n-1} \left(2 \sec^{2} x - \sec^{2} x \sin^{2} \beta + 2 \sec x \tan x \cos \beta \right) dx$$

$$= \int_{0}^{\beta} (\sec x \cos \beta + \tan x)^{n-1} \left(\sec^{2} x + \sec x \tan x \cos \beta \right) dx$$

$$= \int_{0}^{\beta} (\sec x \cos \beta + \tan x)^{n-1} \left(\sec^{2} x + \sec x \tan x \cos \beta \right) dx$$

The first part of the integral integrates similarly:

$$\int_0^\beta (\sec x \cos \beta + \tan x)^{n-1} (\sec^2 x + \sec x \tan x \cos \beta) dx$$
$$= \int_0^\beta (\sec x \cos \beta + \tan x)^{n-1} d (\sec x \cos \beta + \tan x)$$
$$= \frac{1}{n} [(\sec x \cos \beta + \tan x)^n]_0^\beta$$
$$= \frac{1}{n} [(\sec \beta \cos \beta + \tan \beta)^n - (\sec 0 \cos \beta + \tan 0)^n]$$
$$= \frac{1}{n} [(1 + \tan \beta)^n - \cos^n \beta].$$

The second part of the integral has a positive integrand over $(0, \beta)$, and hence the integral is positive, which means

$$\frac{1}{2} \left(J_{n+1} + J_{n-1} \right) > \int_0^\beta (\sec x \cos \beta + \tan x)^{n-1} \left(\sec^2 x + \sec x \tan x \cos \beta \right) \mathrm{d}x$$
$$= \frac{1}{n} \left[(1 + \tan \beta)^n - \cos^n \beta \right].$$

We would like to show that $J_{n+1} + J_{n-1} - 2J_n > 0$ similar as before to show the final result. Note that

$$J_{n+1} + J_{n-1} - 2J_n$$

= $\int_0^\beta (\sec x \cos \beta + \tan x)^{n-1} \left[(\sec x \cos \beta + \tan x)^2 + 1 - 2 (\sec x \cos \beta + \tan x) \right] dx$
= $\int_0^\beta (\sec x \cos \beta + \tan x)^{n-1} \left[(\sec x \cos \beta + \tan x) - 1 \right]^2 dx$
> 0,

and hence $J_n < \frac{1}{2} (J_{n+1} + J_{n-1})$, which shows

$$J_n < \frac{1}{n} \left((1 + \tan \beta)^n - \cos^n \beta \right),$$

as desired.

1. Since θ is the angle between **a** and **b**, we have

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \mathbf{a} \cdot \mathbf{b}.$$

Let λ be the angle between ${\bf m}$ and ${\bf a}.$ Hence,

$$\cos \lambda = \frac{\mathbf{a} \cdot \mathbf{m}}{|\mathbf{a}||\mathbf{m}|}$$
$$= \frac{\mathbf{a} \cdot \frac{1}{2} (\mathbf{a} + \mathbf{b})}{|\mathbf{m}|}$$
$$= \frac{\mathbf{a} \cdot (\mathbf{a} + \mathbf{b})}{|\mathbf{a} + \mathbf{b}|}$$
$$= \frac{1 + \mathbf{a} \cdot \mathbf{b}}{|\mathbf{a} + \mathbf{b}|}$$
$$= \frac{1 + \cos \theta}{|\mathbf{a} + \mathbf{b}|}.$$

Similarly, let μ be the angle between **m** and **b**, and we must have

$$\cos \lambda = \cos \mu = \frac{1 + \cos \theta}{|\mathbf{a} + \mathbf{b}|}.$$

Since $0 \le \lambda, \mu \le \pi$, and cos is one-to-one when restricted to $[0, \pi]$, we must have $\lambda = \mu$, which shows that **m** bisects the angle between **a** and **b**.

2. We must have $\cos \alpha = \mathbf{a} \cdot \mathbf{c}$, and $\cos \beta = \mathbf{b} \cdot \mathbf{c}$. By definition of the projection, we have

$$\mathbf{a}_1 = \mathbf{a} - (\mathbf{a} \cdot \mathbf{c}) \, \mathbf{c}$$
$$= \mathbf{a} - \cos \alpha \mathbf{c},$$

and hence

$$\mathbf{a}_1 \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} - \cos \alpha \mathbf{c} \cdot \mathbf{c}$$
$$= \cos \alpha - \cos \alpha$$
$$= 0,$$

as desired.

Notice that

$$|\mathbf{a}_1|^2 = \mathbf{a}_1 \cdot \mathbf{a}_1$$

= $(\mathbf{a} - \cos \alpha \mathbf{c}) \cdot (\mathbf{a} - \cos \alpha \mathbf{c})$
= $\mathbf{a} \cdot \mathbf{a} - 2\cos \alpha \mathbf{a} \cdot \mathbf{c} + \cos^2 \alpha \mathbf{c} \cdot \mathbf{c}$
= $1 - 2\cos^2 \alpha + \cos^2 \alpha$
= $1 - \cos^2 \alpha$
= $\sin^2 \alpha$.

Since $|a_1| \ge 0$, and $0 < \alpha < \frac{\pi}{2}$, $\sin \alpha > 0$, we must have

$$|\mathbf{a}_1| = |\sin \alpha| = \sin \alpha.$$

The angle φ is given by

$$\cos \varphi = \frac{\mathbf{a}_1 \cdot \mathbf{b}_1}{|\mathbf{a}_1| |\mathbf{b}_1|}$$
$$= \frac{(\mathbf{a} - \cos \alpha \mathbf{c}) \cdot (\mathbf{b} - \cos \beta \mathbf{c})}{\sin \alpha \sin \beta}$$
$$= \frac{\mathbf{a} \cdot \mathbf{b} - \cos \alpha \mathbf{b} \cdot \mathbf{c} - \cos \beta \mathbf{a} \cdot \mathbf{c} + \cos \alpha \cos \beta \mathbf{cc}}{\sin \alpha \sin \beta}$$
$$= \frac{\cos \theta - \cos \alpha \cos \beta - \cos \beta \cos \alpha + \cos \beta \cos \alpha}{\sin \alpha \sin \beta}$$
$$= \frac{\cos \theta - \cos \alpha \cos \beta}{\sin \alpha \sin \beta}.$$

3. By definition of a projection, we have

$$\mathbf{m}_{1} = \mathbf{m} - (\mathbf{m} \cdot \mathbf{c})\mathbf{c}$$

= $\frac{1}{2} (\mathbf{a} + \mathbf{b}) - \left(\frac{1}{2} (\mathbf{a} + \mathbf{b}) \cdot \mathbf{c}\right) \mathbf{c}$
= $\frac{1}{2} (\mathbf{a} + \mathbf{b}) - \left(\frac{1}{2} (\cos \alpha + \cos \beta)\right) \mathbf{c}$
= $\frac{1}{2} (\mathbf{a}_{1} + \mathbf{b}_{1}).$

Let ν be the angle between \mathbf{m}_1 and \mathbf{a}_1 , we have

$$\cos \nu = \frac{\mathbf{m}_1 \cdot \mathbf{a}_1}{|\mathbf{m}_1||\mathbf{a}_1|}$$
$$= \frac{\frac{1}{2} (\mathbf{a}_1 + \mathbf{b}_1) \cdot \mathbf{a}_1}{\frac{1}{2} |\mathbf{a}_1 + \mathbf{b}_1| \sin \alpha}$$
$$= \frac{\mathbf{a}_1 \cdot \mathbf{a}_1 + \mathbf{b}_1 \cdot \mathbf{a}_1}{|\mathbf{a}_1 + \mathbf{b}_1| \sin \alpha}$$
$$= \frac{\sin^2 \alpha + \cos \varphi \sin \alpha \sin \beta}{|\mathbf{a}_1 + \mathbf{b}_1| \sin \alpha}$$
$$= \frac{\sin^2 \alpha + \cos \theta - \cos \alpha \cos \beta}{|\mathbf{a}_1 + \mathbf{b}_1| \sin \alpha}$$

Similarly, let τ be the angle between \mathbf{m}_1 and \mathbf{b}_1 , we have

$$\cos \tau = \frac{\sin^2 \beta + \cos \theta - \cos \alpha \cos \beta}{|\mathbf{a}_1 + \mathbf{b}_1| \sin \beta}$$

Since $0 \le \nu, \tau \le \pi$, $\nu = \tau$ if and only if

$$\cos \nu = \cos \tau$$

$$\frac{\sin^2 \alpha + \cos \theta - \cos \alpha \cos \beta}{|\mathbf{a}_1 + \mathbf{b}_1| \sin \alpha} = \frac{\sin^2 \beta + \cos \theta - \cos \alpha \cos \beta}{|\mathbf{a}_1 + \mathbf{b}_1| \sin \beta}$$

$$\sin \beta \left(\sin^2 \alpha + \cos \theta - \cos \alpha \cos \beta \right) = \sin \alpha \left(\sin^2 \beta + \cos \theta - \cos \alpha \cos \beta \right)$$

$$\sin \alpha \sin \beta (\sin \alpha - \sin \beta) + \cos \alpha \cos \beta (\sin \alpha - \sin \beta) = \cos \theta (\sin \alpha - \sin \beta)$$

$$(\sin \alpha \sin \beta + \cos \alpha \cos \beta) (\sin \alpha - \sin \beta) = \cos \theta (\sin \alpha - \sin \beta)$$

$$(\cos(\alpha - \beta) - \cos \theta) (\sin \alpha - \sin \beta) = 0.$$

This is if and only if $\sin \alpha = \sin \beta$, or $\cos \theta = \cos(\alpha - \beta)$.

Since $0 < \alpha, \beta < \frac{\pi}{2}$, and sin is one-to-one when restricted to $(0, \frac{\pi}{2})$, the first condition is true if and only if $\alpha = \beta$.

Hence, \mathbf{m}_1 bisects the angle between \mathbf{a}_1 and \mathbf{b}_1 if and only if $\alpha = \beta$ or $\cos \theta = \cos(\alpha - \beta)$, as desired.

1. When the curves meet, the r values and the θ values must be both equal, and hence

$$a + 2\cos\theta = 2 + \cos 2\theta$$
$$a + 2\cos\theta = 2 + 2\cos^2\theta - 1$$
$$2\cos^2\theta - 2\cos\theta + 1 - a = 0,$$

as desired.

By differentiating with respect to theta, for the two curves to touch, we must have

$$\frac{\mathrm{d}}{\mathrm{d}\theta}(a+2\cos\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta}(2+\cos 2\theta)$$
$$-2\sin\theta = -2\sin 2\theta$$
$$\sin\theta = \sin 2\theta$$
$$\sin\theta = 2\sin\theta\cos\theta$$
$$\sin\theta(2\cos\theta - 1) = 0.$$

This means, either for the value of $\sin \theta = 0$ it satisfies the first equation, or for the value of $2\cos \theta - 1 = 0$ it satisfies the first equation.

For the first case, we must have $\cos \theta = \pm 1$, and hence

$$a = 2\cos^2 \theta - 2\cos \theta + 1$$

= 2(±1)² - 2(±1) + 1
= 3 ± 2,

and so a = 1 or a = 5.

For the second case, we have $\cos \theta = \frac{1}{2}$, and hence

$$a = 2\cos^2 \theta - 2\cos \theta + 1$$
$$= 2\left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right) + 1$$
$$= \frac{1}{2},$$

as desired.

2. For the case where $a = \frac{1}{2}$, the curves meet precisely for $\cos \theta = \frac{1}{2}$ only, and hence $\theta = \pm \frac{\pi}{3}$, which gives $r = \frac{1}{2} + 1 = \frac{3}{2}$.

Both curves are symmetric about the initial line, since cos is an even function.

When $\theta = 0$, $r_1 = a + 2 = \frac{5}{2}$, and $r_2 = 2 + 1 = 3$. For r_1 , since $r \ge 0$, we must have

$$\begin{aligned} \frac{1}{2} + 2\cos\theta &\geq 0\\ \cos\theta &\geq -\frac{1}{4}, \end{aligned}$$

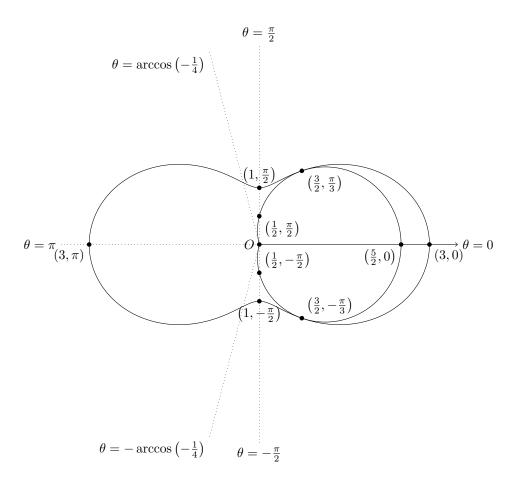
which means it only exists for

$$-\arccos\left(-\frac{1}{4}\right) \le \theta \le \arccos\left(-\frac{1}{4}\right).$$

When $\theta = \pm \frac{\pi}{2}$, $r_1 = \frac{1}{2} + 2\cos \pm \frac{\pi}{2} = \frac{1}{2}$.

For all values of θ , we must have $r_2 \ge 0$. When $\theta = \pi$, $r_2 = 2 + 1 = 3$, and for $\theta = \pm \frac{\pi}{2}$, $r_1 = \frac{1}{2} + \cos \pm \frac{\pi}{2} = \frac{1}{2}$, $r_2 = 2 + \cos \pm \pi = 1$.

Hence, the two curves are as follows. All coordinates are in (r, θ) .



3. •
$$a = 1$$
. For r_1 , since $r \ge 0$, we must have

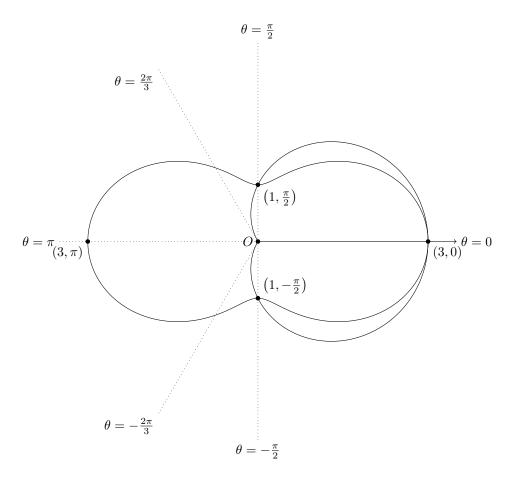
$$\begin{split} 1+2\cos\theta \geq 0\\ \cos\theta \geq -\frac{1}{2}, \end{split}$$

which means $-\frac{2}{3}\pi \le \theta \le \frac{2}{3}\pi$. The two curves meet when

$$2\cos^2 \theta - 2\cos \theta = 0$$
$$\cos \theta (\cos \theta - 1) = 0,$$

which is when $\cos \theta = 0$ or $\cos \theta = 1$.

For $\cos \theta = 0$, this means $\theta = \pm \frac{\pi}{2}$, and r = 1. For this value of θ , the two curves cross. For $\cos \theta = 1$, this means $\theta = 0$, and r = 3. For this value of θ , the two curves touch.

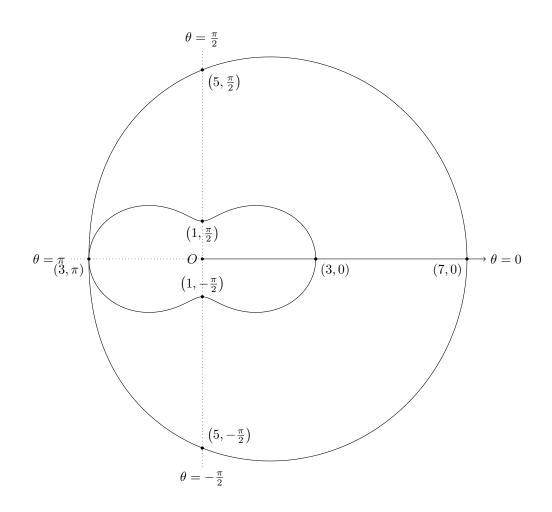


• a = 5. For $r_1, r \ge 0$ for all θ . The two curves meet when

 $2\cos^2 \theta - 2\cos \theta = 4$ $\cos^2 \theta - \cos \theta - 2 = 0$ $(\cos \theta - 2)(\cos \theta + 1) = 0,$

which is when $\cos \theta = -1$, since $\cos \theta \neq 2$.

For $\cos \theta = -1$, this means $\theta = \pi$, and r = 3. For this value of θ , the two curves touch. When $\theta = 0$, $r_1 = 5 + 2 = 7$, and $r_2 = 2 + 1 = 3$. When $\theta = \pm \frac{1}{2}\pi$, $r_1 = 5 + 2\cos \pm \frac{1}{2}\pi = 5$, $r_2 = 2 + \cos \pm \pi = 1$.



1. By multiplying by $\cot \alpha$ on top and bottom of the fraction, we have

$$f_{\alpha}(x) = \arctan\left(\frac{x + \cot \alpha}{1 - x \cot \alpha}\right)$$
$$= \arctan\left(\frac{x + \tan\left(\frac{\pi}{2} - \alpha\right)}{1 - x \tan\left(\frac{\pi}{2} - \alpha\right)}\right)$$
$$= \arctan \tan\left(\arctan x + \frac{\pi}{2} - \alpha\right)$$

Since $\arctan x \in \left(-\frac{\pi}{2}, \alpha\right) \cup \left(\alpha, \frac{\pi}{2}\right)$, we have

$$\arctan x + \frac{\pi}{2} - \alpha \in \left(-\alpha, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi - \alpha\right).$$

Hence, we can simplify this to

$$f_{\alpha}(x) = \arctan \tan \left(\arctan x + \frac{\pi}{2} - \alpha\right)$$
$$= \begin{cases} \arctan x + \frac{\pi}{2} - \alpha, & x < \tan \alpha, \\ \arctan x - \frac{\pi}{2} - \alpha, & x > \tan \alpha. \end{cases}$$

Hence, by differentiating with respect to x, the constants differentiate to 0, and hence

$$f'_{\alpha}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \arctan x$$
$$= \frac{1}{1+x^2},$$

as desired.

The graph consists of 2 branches of arctan, as the simplified expressions suggests. We have the following limiting behaviours of f_{α} :

$$\lim_{x \to -\infty} f_{\alpha}(x) = \lim_{x \to -\infty} \arctan x + \frac{\pi}{2} - \alpha = -\alpha$$
$$\lim_{x \to \tan \alpha^{-}} f_{\alpha}(x) = \frac{\pi}{2},$$
$$\lim_{x \to \tan \alpha^{+}} f_{\alpha}(x) = -\frac{\pi}{2},$$
$$\lim_{x \to \infty} f_{\alpha}(x) = \lim_{x \to \infty} \arctan x - \frac{\pi}{2} - \alpha = -\alpha,$$

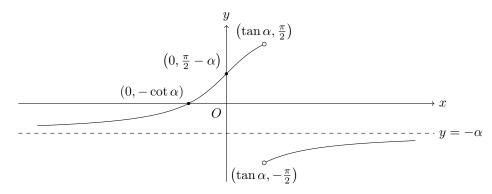
which shows that f_{α} has a horizontal asymptote with equation $y = -\alpha$. For the intersection with the *y*-axis,

$$f_{\alpha}(0) = \arctan 0 + \frac{\pi}{2} - \alpha = \frac{\pi}{2} - \alpha,$$

and for the intersection with the x-axis,

$$f_{\alpha}(x) = 0 \iff x \tan \alpha + 1 = 0 \iff x = -\cot \alpha.$$

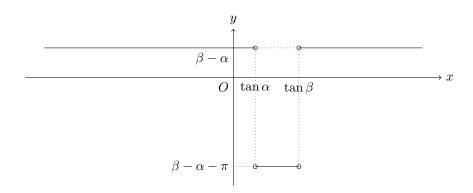
The graph looks as follows.



The domain of this new graph is $x \in \mathbb{R} \setminus \{\tan \alpha, \tan \beta\}$. By considering the functions in the different corresponding ranges, we have

$$f_{\alpha}(x) - f_{\beta}(x) = \begin{cases} \left(\arctan(x) + \frac{\pi}{2} - \alpha\right) - \left(\arctan(x) + \frac{\pi}{2} - \beta\right) = \beta - \alpha, & x < \tan \alpha, \\ \left(\arctan(x) - \frac{\pi}{2} - \alpha\right) - \left(\arctan(x) + \frac{\pi}{2} - \beta\right) = \beta - \alpha - \pi, & \tan \alpha < x < \tan \beta, \\ \left(\arctan(x) - \frac{\pi}{2} - \alpha\right) - \left(\arctan(x) - \frac{\pi}{2} - \beta\right) = \beta - \alpha, & \tan \beta < x. \end{cases}$$

Hence, the graph looks as follows.



2. By differentiation, we have

$$g'(x) = \frac{1}{1 - \sin^2 x} \cos x - \frac{1}{\sqrt{1 + \tan^2 x}} \sec^2 x$$

= $\frac{\cos x}{\cos^2 x} - \frac{\sec^2 x}{|\sec x|}$
= $\sec x - |\sec x|$
= $\begin{cases} \sec x - \sec x = 0, & 0 \le x < \frac{1}{2}\pi \text{ or } \frac{3}{2}\pi < x \le 2\pi, \\ \sec x - (-\sec x) = 2\sec x, & \frac{1}{2}\pi < x < \frac{3}{2}\pi, \end{cases}$

since sec x takes the same sign as $\cos x$, which is negative when $\frac{1}{2}\pi < x < \frac{3}{2}\pi$, and positive when $0 \le x < \frac{1}{2}\pi$ or $\frac{3}{2}\pi < x \le 2\pi$ within the range. For $\frac{1}{2}\pi < x < \frac{3}{2}\pi$, we must have

$$g(x) = \ln|\tan x + \sec x| + C = \ln(-\tan x - \sec x) + C$$

and by verifying

$$g(\pi) = \operatorname{artanh}(0) - \operatorname{arsinh}(0) = 0$$

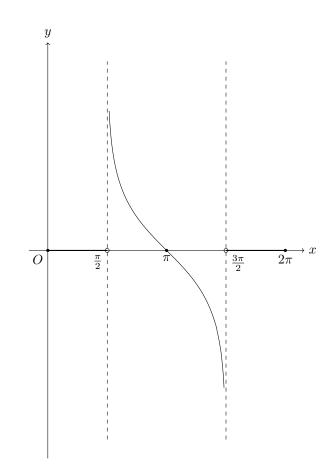
we can see C = 0.

Hence, for $0 \le x < \frac{1}{2}\pi$ and $\frac{3}{2}\pi < x \le 2\pi$ respectively, g(x) is constant, and notice that

$$g(0) = g(2\pi) = 0$$

and hence

$$g(x) = \begin{cases} \ln\left(-\tan x - \sec x\right), & \frac{1}{2}\pi < x < \frac{3}{2}\pi, \\ 0, & 0 \le x < \frac{1}{2}\pi \text{ or } \frac{3}{2}\pi \le 2\pi. \end{cases}$$



1. Notice that

$$\begin{aligned} z &= \frac{\exp(i\theta) + \exp(i\varphi)}{\exp(i\theta) - \exp(i\varphi)} \\ &= \frac{\exp(i\theta) + \exp(i\varphi)}{\exp(i\theta) - \exp(i\varphi)} \cdot \frac{\exp(-i\theta) - \exp(-i\varphi)}{\exp(-i\theta) - \exp(-i\varphi)} \\ &= \frac{1 + \exp(i\varphi - i\theta) - \exp(i\theta - i\varphi) - 1}{1 - \exp(i\theta - i\varphi) - \exp(i\varphi - i\theta) + 1} \\ &= \frac{\exp(i(\varphi - \theta)) - \exp(-i(\varphi - \theta))}{2 - \exp(-i(\varphi - \theta)) - \exp(i(\varphi - \theta))} \\ &= \frac{2i\sin(\varphi - \theta)}{2 - 2\cos(\varphi - \theta)} \\ &= \frac{i\sin(\varphi - \theta)}{1 - \cos(\varphi - \theta)} \\ &= \frac{i \cdot 2\sin\frac{\varphi - \theta}{2}\cos\frac{\varphi - \theta}{2}}{1 - (1 - 2\sin^2\frac{\varphi - \theta}{2})} \\ &= \frac{2i\sin\frac{\varphi - \theta}{2}\cos\frac{\varphi - \theta}{2}}{2\sin^2\frac{\varphi - \theta}{2}} \\ &= i\cot\frac{\varphi - \theta}{2}, \end{aligned}$$

as desired.

The modulus of z is $\left|\cot\frac{\varphi-\theta}{2}\right|$. The argument of z is $\pm\frac{\pi}{2}$.

2. Let $a = \exp(i\alpha)$, and $b = \exp(i\beta)$, where $a - b \neq 2n\pi$ for integer n (this ensures that A and B are distinct). We must have $x = a + b = \exp(i\alpha) + \exp(i\beta)$, and $b - a = \exp(i\beta) - \exp(i\alpha)$.

The vectors representing the two complex numbers are perpendicular, if and only if their argument differ by $\pm \frac{\pi}{2}$, if and only if their ratio has argument $\pm \frac{\pi}{2}$. Notice that the ratios

$$\frac{OX}{AB} = \frac{a+b}{b-a}$$
$$= \frac{\exp(i\alpha) + \exp(i\beta)}{\exp(i\beta) - \exp(i\alpha)}$$

takes the same form as z before, and hence has argument $\pm \frac{\pi}{2}$. This hence means OX is perpendicular to AB.

3. Similarly, let $a = \exp(i\alpha)$, $b = \exp(i\beta)$, and $c = \exp(i\gamma)$, where no pair of α, β and γ differ by some multiple of 2π (which ensures that A, B, C are distinct points).

If H is the orthocentre of triangle ABC, then

$$h = a + b + c = \exp(i\alpha) + \exp(i\beta) + \exp(i\gamma).$$

and hence

$$AH = h - a = b + c = \exp(i\beta) + \exp(i\gamma),$$
$$BC = c - b = \exp(i\gamma) - \exp(i\beta).$$

If $h \neq a$, then $AH = b + c \neq 0$, then the angle between AH and BC is given by the argument of the ratio of the complex numbers representing them, and notice

$$\frac{AH}{BC} = \frac{\exp(i\beta) + \exp(i\gamma)}{\exp(i\gamma) - \exp(i\beta)},$$

which takes the same form of z in the first part. Hence, the argument of this must be $\pm \frac{\pi}{2}$ since $b + c \neq 0$, which shows that AH is perpendicular to BC.

This means that either h = a, or AH is perpendicular to BC, as desired.

4. Similarly, let $a = \exp(i\alpha)$, $b = \exp(i\beta)$, $c = \exp(i\gamma)$ and $d = \exp(i\delta)$, where no pair of α , β , γ and δ differ by some multiple of 2π (which ensures that A, B, C, D are distinct points). Hence,

$$q = b + c + d = \exp(i\beta) + \exp(i\gamma) + \exp(i\delta),$$

and the midpoint of AQ, M, represented by complex number m, is given by

$$m = \frac{a+b+c+d}{2}.$$

By symmetry, the midpoint of BR, CS and DP must also be M.

This means that by an enlargement of scale factor -1 about M, A will be transformed to Q, B to R, C to S, and D to P.

Hence, ABCD is transformed to PQRS by an enlargement of scale factor -1, with centre of enlargement being $\frac{a+b+c+d}{4}$, the midpoint of AQ.

1. We show this by induction on n.

We first consider the base case where n = 1. Notice LHS = $x_1 = a$, and

RHS =
$$2 + 4^{1-1}(a-2) = 2 + (a-2) = a$$
.

Hence, $LHS \ge RHS$ is true.

Now, assume that the original statement

$$x_n \ge 2 + 4^{n-1}(a-2)$$

is true for some n = k.

Consider the case where n = k + 1. We first notice that since a > 2, we must have

$$x_n \ge 2 + 4^{n-1}(a-2) > 0.$$

Hence, we have

LHS =
$$x_{k+1}$$

= $x_k^2 - 2$
 $\geq (2 + 4^{k-1}(a-2))^2 - 2$
= $4 + 4^{2k-2}(a-2)^2 + 4 \cdot 4^{k-1}(a-2) - 2$
= $2 + 4^k(a-2) + 4^{2k-2}(a-2)^2$
 $> 2 + 4^{(k+1)-1}(a-2)$
= RHS,

and this shows that the original statement is true for the case n = k + 1 as well.

Hence, the original statement is true for the base case n = 1, and given it holds for n = k, it holds for n = k + 1. By the principle of mathematical induction, it must hold for all integers $n \ge 1$ given a > 2, as desired.

2. • If direction. We are given that |a| > 2. If a < 0, we must have a < -2, but notice that for $x_1 = a, x_2 = a^2 - 2$, and for $x_1 = -a, x_2 = (-a)^2 - 2 = a^2 - 2$. Hence, if the first term only differs by a plus/minus sign, all the terms including and after the second term will behave identically. This means we only have to consider the case a > 2, and since

$$x_n \ge 2 + 4^{n-1}(a-2),$$

and the right-hand side diverges to ∞ as $n \to \infty$, we can conclude that

$$\lim_{n \to \infty} x_n = \infty,$$

as desired.

• Only-if direction. We attempt to prove the contrapositive of the only-if direction, i.e. given that $|a| \leq 2$, we want to show that x_n does not diverge to ∞ .

We would like to show that $|x_n| \leq 2$ for all $n \in \mathbb{N}$.

The base case where n = 1 is true, since $0 \le a \le 2$. Now, assume that this is true for some n = k, i.e.

$$|x_n| \le 2 \iff -2 \le x_n \le 2 \iff 0 \le x_n^2 \le 4.$$

For n = k + 1,

$$x_n = x_{k+1} = x_k^2 - 2,$$

and hence

$$-2 \le x_{k+1} \le 2 \iff |x_{k+1}| \le 2$$

So this statement is true for the base case where n = 1, and given it holds for some n = k it holds for the case n = k+1. Hence, by the principle of mathematical induction, this statement is true for all $n \in \mathbb{N}$.

This means that x_n is bounded above and below, and hence it cannot diverge to infinity. This proves the contrapositive of the only-if direction, and hence the only-if direction is true.

In conclusion, we have shown that $x_n \to \infty$ as $n \to \infty$ if and only if |a| > 2.

3. If this is true for all $n \ge 1$, then this is true for n = 1. On one hand,

$$y_1 = \frac{Ax_1}{x_2} = \frac{Aa}{a^2 - 2},$$

and on the other hand

$$y_1 = \frac{\sqrt{x_2^2 - 4}}{x_2} = \frac{\sqrt{(a^2 - 2)^2 - 4}}{a^2 - 2} = \frac{\sqrt{a^4 - 4a^2}}{a^2 - 2} = \frac{a\sqrt{a^2 - 4}}{a^2 - 2}$$

Hence, we must have

$$A = \sqrt{a^2 - 4}$$
$$A^2 = a^2 - 4$$
$$a^2 = A^2 + 4$$
$$a = \sqrt{A^2 + 4},$$

since a > 2.

We still have to show that this a gives the desired relation for every $n \ge 1$. Notice that by definition,

$$y_{n+1} = \frac{A \prod_{i=1}^{n+1} x_i}{x_{n+2}}$$
$$= \frac{A \prod_{i=1}^{n}}{x_{n+1}} \cdot \frac{x_{n+1}^2}{x_{n+2}}$$
$$= y_n \cdot \frac{x_{n+1}^2}{x_{n+2}}.$$

We aim to show this by induction on n. The base case where n = 1 is shown above. Now, assume that

$$y_n = \frac{\sqrt{x_{n+1}^2 - 4}}{x_{n+1}}$$

for a certain value of n = k. For n = k + 1,

$$y_{n} = y_{k+1}$$

$$= y_{k} \cdot \frac{x_{n+1}^{2}}{x_{n+2}}$$

$$= frac\sqrt{x_{n+1}^{2} - 4x_{n+1}} \cdot \frac{x_{n+1}^{2}}{x_{n+2}}$$

$$= \frac{\sqrt{x_{n+1}^{2} - 4x_{n+1}}}{x_{n+2}}$$

$$= \frac{\sqrt{x_{n+1}^{4} - 4x_{n+1}^{2}}}{x_{n+2}}$$

$$= \frac{\sqrt{(x_{n+1}^{2} - 4x_{n+1}^{2})^{2} - 4}}{x_{n+2}}$$

$$= \frac{\sqrt{x_{n+2}^{2} - 4x_{n+2}^{2}}}{x_{n+2}},$$

which is precisely the original statement for n = k + 1.

By the principle of mathematical induction, for $a = \sqrt{A^2 + 4}$, we have shown that this desired statement holds for the base case n = 1, and given that it holds for some n = k, we can show it holds for n = k + 1. Hence, by the principle of mathematical induction, we have that

$$y_n = \frac{\sqrt{x_{n+1}^2 - 4}}{x_{n+1}}$$

for every value of $n \ge 1$ for this certain value of $a = \sqrt{A^2 + 4}$.

Hence, for the value $a = \sqrt{A^2 + 4}$, we have the statement holds for all $n \ge 1$. We have also shown that if the statement holds for all $n \ge 1$, it must be the case that $a = \sqrt{A^2 + 4}$. Hence, for precisely this value of $a = \sqrt{A^2 + 4}$, we have

$$y_n = \frac{\sqrt{x_{n+1}^2 + 4}}{x_{n+1}}$$

For this value of a > 2, we have $x_n \to \infty$ as $n \to \infty$. Hence,

$$y_n = \frac{\sqrt{x_{n+1}^2 + 4}}{x_{n+1}} = \sqrt{1 + \frac{4}{x_{n+1}^2}}$$

converges to 1 as $n \to \infty$.

1. From the definitions, $X \sim \text{Exp}(\lambda)$, and $Y = \lfloor X \rfloor$. Hence, for $n \ge 0$,

$$P(Y = n) = P(\lfloor X \rfloor = n)$$

= $P(n \le X < n + 1)$
= $\int_{n}^{n+1} f(x) dx$
= $\int_{n}^{n+1} \lambda \cdot e^{-\lambda x} dx$
= $[-e^{-\lambda x}]_{n}^{n+1}$
= $-e^{-\lambda(n+1)} + e^{-\lambda n}$
= $e^{-n\lambda} (1 - e^{-\lambda}),$

as desired.

2. Since Z = X - Y, we know that $Z = \{X\}$ where $\{x\}$ stands for the fractional part of x. Hence, for $0 \le z \le 1$, we have

$$\begin{split} \mathrm{P}(Z < z) &= \mathrm{P}(\{X\} < z) \\ &= \mathrm{P}(X - Y < z) \\ &= \sum_{n=0}^{\infty} \mathrm{P}(X < Y + z, Y = n) \\ &= \sum_{n=0}^{\infty} \mathrm{P}(n \leq X < n + z) \\ &= \sum_{n=0}^{\infty} \int_{n}^{n+z} \lambda \cdot e^{-\lambda x} \, \mathrm{d}x \\ &= \sum_{n=0}^{\infty} \left[-e^{-\lambda x} \right]_{n}^{n+z} \\ &= \sum_{n=0}^{\infty} \left[-e^{-\lambda(n+z)} + e^{-\lambda n} \right] \\ &= \sum_{n=0}^{\infty} e^{-n\lambda} \left(1 - e^{-\lambda z} \right) \\ &= \left(1 - e^{-\lambda z} \right) \sum_{n=0}^{\infty} e^{-n\lambda} \\ &= \left(1 - e^{-\lambda z} \right) \cdot \frac{1}{1 - e^{-\lambda}} \\ &= \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}, \end{split}$$

as desired.

3. It must be the case that $0 \le Z < 1$, and the cumulative distribution function of Z is given by, for $0 \le z \le 1$,

$$F_Z(z) = \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}.$$

By differentiating with respect to z, we get the probability density function of Z is given by, for

 $0\leq z\leq 1,$

$$f_Z(z) = F'_Z(z)$$

= $\frac{\mathrm{d}}{\mathrm{d}z} \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}$
= $\frac{1}{1 - e^{-\lambda}} \cdot (\lambda \cdot e^{-\lambda z})$
= $\frac{\lambda e^{-\lambda z}}{1 - e^{-\lambda}},$

and zero everywhere else.

Hence, the expectation is given by

$$\begin{split} \mathbf{E}(Z) &= \int_0^1 z f_Z(z) \, \mathrm{d}z \\ &= \int_0^1 \frac{\lambda z e^{-\lambda z}}{1 - e^{-\lambda}} \, \mathrm{d}z \\ &= \frac{\lambda}{1 - e^{-\lambda}} \int_0^1 z e^{-\lambda z} \, \mathrm{d}z \\ &= -\frac{1}{1 - e^{-\lambda}} \int_0^1 z \, \mathrm{d}e^{-\lambda z} \\ &= -\frac{1}{1 - e^{-\lambda}} \left[\left(z e^{-\lambda z} \right)_0^1 - \int_0^1 e^{-\lambda z} \, \mathrm{d}z \right] \\ &= -\frac{1}{1 - e^{-\lambda}} \left[z e^{-\lambda z} + \frac{e^{-\lambda z}}{\lambda} \right]_0^1 \\ &= -\frac{1}{1 - e^{-\lambda}} \left[\left(e^{-\lambda} + \frac{e^{-\lambda}}{\lambda} \right) - \left(0 + \frac{1}{\lambda} \right) \right] \\ &= \frac{\frac{1}{\lambda} - \frac{e^{-\lambda}}{\lambda} - e^{-\lambda}}{1 - e^{-\lambda}} \\ &= \frac{1 - e^{-\lambda} - \lambda e^{-\lambda}}{\lambda (1 - e^{-\lambda})}. \end{split}$$

4. Since $0 \le z_1 < z_2 \le 1$, we have $n \le n + z_1 < n + z_2 \le n + 1$, and hence

$$P(Y = n, z_1 < Z < z_2) = P(Y = n, z_1 < X - Y < z_2)$$

= $P(n + z_1 < X < n + z_2)$
= $\int_{n+z_1}^{n+z_2} \lambda \cdot e^{-\lambda x}$
= $[-e^{-\lambda x}]_{n+z_1}^{n+z_2}$
= $e^{-\lambda(n+z_1)} - e^{-\lambda(n+z_2)}$
= $e^{-\lambda n} [e^{-\lambda z_1} - e^{-\lambda z_2}].$

On the other hand, notice

$$\begin{split} \mathbf{P}(Y=n) \, \mathbf{P}(z_1 < Z < z_2) &= \mathbf{P}(Y=n) \left(\mathbf{P}(Z < z_2) - \mathbf{P}(Z - z_1) \right) \\ &= (1 - e^{-\lambda}) e^{-n\lambda} \cdot \left[\frac{1 - e^{-\lambda z_2}}{1 - e^{-\lambda}} - \frac{1 - e^{-\lambda z_1}}{1 - e^{-\lambda}} \right] \\ &= e^{-n\lambda} \left[\left(1 - e^{-\lambda z_2} \right) - \left(1 - e^{-\lambda z_1} \right) \right] \\ &= e^{-n\lambda} \left[e^{-\lambda z_1} - e^{-\lambda z_2} \right]. \end{split}$$

Hence, we have

$$P(Y = n, z_1 < Z < z_2) = P(Y = n) P(z_1 < Z < z_2),$$

and we can conclude that Y and Z are independent.

1. Let X_i be the outcome of player i in a die roll. Then we have

$$X_{ij} = \begin{cases} 1, & X_i = X_j, \\ 0, & X_i \neq X_j. \end{cases}$$

Hence, we have

$$P(X_{ij} = 1) = P(X_i = X_j)$$

= $\sum_{n=1}^{6} P(X_i = X_j = n)$
= $\sum_{n=1}^{6} P(X_i = n) P(X_j = n)$
= $\sum_{n=1}^{6} \frac{1}{6} \cdot \frac{1}{6}$
= $6 \cdot \frac{1}{6} \cdot \frac{1}{6}$
= $\frac{1}{6}$,

and hence $P(X_{ij} = 0) = 1 - \frac{1}{6} = \frac{5}{6}$. Furthermore,

$$E(X_{ij}) = \frac{1}{6} \cdot 1 = \frac{1}{6},$$

and hence

Var
$$(X_{ij}) = E(X_{ij}^2) - (X_{ij})^2 = \frac{1}{6} \cdot 1 - \left(\frac{1}{6}\right)^2 = \frac{5}{36}.$$

For any $1 \leq i < j < k \leq n$, we have

$$P(X_{ij} = 1, X_{jk} = 1) = P(X_i = X_j, X_j = X_k)$$

= $P(X_i = X_j = X_k)$
= $\sum_{n=1}^{6} P(X_i = X_j = X_k = n)$
= $\sum_{n=1}^{6} P(X_i = n) P(X_j = n) P(X_k = n)$
= $\sum_{n=1}^{6} \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$
= $6 \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$
= $\frac{1}{36}$
= $P(X_{ij} = 1) P(X_{jk} = 1),$

$$\begin{split} \mathrm{P}(X_{ij} = 1, X_{jk} = 0) &= \mathrm{P}(X_i = X_j, X_j \neq X_k) \\ &= \sum_{n=1}^{6} \sum_{m \neq n} \mathrm{P}(X_i = X_j = n, X_k = m) \\ &= \sum_{n=1}^{6} \sum_{m \neq n} \mathrm{P}(X_i = n) \,\mathrm{P}(X_j = n) \,\mathrm{P}(X_k = m) \\ &= \sum_{n=1}^{6} \sum_{m \neq n} \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \\ &= 6 \cdot 5 \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \\ &= \frac{5}{36} \\ &= \mathrm{P}(X_{ij} = 1) \,\mathrm{P}(X_{jk} = 0), \end{split}$$
$$\begin{aligned} \mathrm{P}(X_{ij} = 0, X_{jk} = 1) &= \mathrm{P}(X_i \neq X_j, X_j = X_k) \\ &= \sum_{n=1}^{6} \sum_{m \neq n} \mathrm{P}(X_i = m, X_j = X_k = m) \\ &= \sum_{n=1}^{6} \sum_{m \neq n} \mathrm{P}(X_i = m) \,\mathrm{P}(X_j = n) \,\mathrm{P}(X_k = n) \\ &= \sum_{n=1}^{6} \sum_{m \neq n} \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \\ &= 6 \cdot 5 \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \\ &= \frac{5}{36} \\ &= \mathrm{P}(X_{ij} = 0) \,\mathrm{P}(X_{jk} = 1), \end{split}$$

_ _

and

$$P(X_{ij} = 0, X_{jk} = 0) = P(X_i \neq X_j, X_j \neq X_k)$$

= $\sum_{n=1}^{6} \sum_{m \neq n} \sum_{l \neq n} P(X_i = m, X_j = n, X_k = l)$
= $\sum_{n=1}^{6} \sum_{m \neq n} \sum_{l \neq n} P(X_i = m) P(X_j = n) P(X_k = l)$
= $\sum_{n=1}^{6} \sum_{m \neq n} \sum_{l \neq n} \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$
= $6 \cdot 5 \cdot 5 \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$
= $\frac{25}{36}$
= $P(X_{ij} = 0) P(X_{jk} = 0).$

Hence, X_{ij} and X_{jk} are independent, and therefore X_{12} is independent of X_{23} . Similarly, for $0 \le i < j < k \le n$, we have X_{ij} is independent of X_{ik} , and X_{ik} is independent of X_{jk} . Furthermore, for $0 \le i < j \le n$ and $0 \le k , where none of <math>i, j, k, l$ are equal, we have X_{ij} is independent of X_{kl} since the outcomes are completely irrelevant and independent.

Hence, X_{ij} s are pairwise independent. Let X be the total score:

$$X = \sum_{0 \le i < j \le n} X_{ij}$$

and hence we have

$$E(X) = E\left(\sum_{0 \le i < j \le n} X_{ij}\right)$$
$$= \sum_{0 \le i < j \le n} E(X_{ij})$$
$$= \sum_{0 \le i < j \le n} \cdot \frac{1}{6}$$
$$= \binom{n}{2} \cdot \frac{1}{6}$$
$$= \frac{n(n-1)}{12},$$

and

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{0 \le i < j \le n} X_{ij}\right)$$
$$= \sum_{0 \le i < j \le n} \operatorname{Var}(X_{ij})$$
$$= \sum_{0 \le i < j \le n} \cdot \frac{5}{36}$$
$$= \binom{n}{2} \cdot \frac{5}{36}$$
$$= \frac{5n(n-1)}{72},$$

2. Define

$$Y = \sum_{i=1}^{m} Y_i,$$

and hence

$$\mathbf{E}(Y) = \mathbf{E}\left(\sum_{i=1}^{m} Y_i\right) = \sum_{i=1}^{m} \mathbf{E}(Y_i) = 0.$$

Hence,

$$\begin{aligned} \operatorname{Var}(Y) &= \operatorname{E}(Y^{2}) - \operatorname{E}(Y)^{2} \\ &= \operatorname{E}\left(\left(\sum_{i=1}^{m} Y_{i}\right)^{2}\right) \\ &= \operatorname{E}\left(\sum_{i=1}^{m} Y_{i}^{2} + \sum_{i \neq j} Y_{i}Y_{j}\right) \\ &= \operatorname{E}\left(\sum_{i=1}^{m} Y_{i}^{2} + 2\sum_{1 \leq i < j \leq m} Y_{i}Y_{j}\right) \\ &= \operatorname{E}\left(\sum_{i=1}^{m} Y_{i}^{2} + 2\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} Y_{i}Y_{j}\right) \\ &= \sum_{i=1}^{m} \operatorname{E}\left(Y_{i}^{2}\right) + 2\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \operatorname{E}\left(Y_{i}Y_{j}\right), \end{aligned}$$

as desired.

3. By definition, we have

$$Z_{ij} = \begin{cases} 1, & X_i = X_j \text{ is even,} \\ -1, & X_i = X_j \text{ is odd,} \\ 0, & X_i \neq X_j. \end{cases}$$

Hence, we have $P(Z_{ij} = 0) = P(X_{ij} = 0) = \frac{5}{6}$, and

$$P(Z_{ij} = 1) = P(Z_{ij} = -1) = \frac{1}{2} (1 - P(Z_{ij} = 0))$$
$$= \frac{1}{2} (1 - P(X_{ij} = 0))$$
$$= \frac{1}{2} \left(1 - \frac{5}{6}\right)$$
$$= \frac{1}{12},$$

which means $E(Z_{ij}) = 0$.

Consider $Z_{12} = 1$ and $Z_{23} = -1$. If $Z_{12} = 1$ and $Z_{23} = -1$, this means $X_1 = X_2$ are both even, and $X_2 = X_3$ are both odd. This is impossible, and hence

$$P(Z_{12} = 1, Z_{23} = -1) = 0.$$

On the other hand,

$$P(Z_{12} = 1) P(Z_{23} = -1) = \frac{1}{12} \cdot \frac{1}{12} = \frac{1}{144} \neq 0,$$

and so Z_{12} and Z_{23} are not independent.

Notice that $X_{ij} = Z_{ij}^2$ and so $\mathcal{E}(Z_{ij}^2) = \mathcal{E}(X_{ij}) = \frac{1}{6}$.

We can say for $1 \le i < j \le n$ and $1 \le k < l \le n$, where none of i, j, k, l are equal, since X_i, X_j, X_k and X_l are independent, we must have Z_{ij} is independent of Z_{kl} , and hence

$$\operatorname{E}\left(Z_{ij}Z_{kl}\right) = \operatorname{E}\left(Z_{ij}\right)\operatorname{E}\left(Z_{kl}\right) = 0.$$

However, for $1 \leq i < j < k \leq n$, we have

$$P(Z_{ij}Z_{jk} = -1) = P(Z_{ij} = 1, Z_{jk} = -1) + P(Z_{ij} = -1, Z_{jk} = 1) = 0.$$

For the event $Z_{ij}Z_{jk} = 1$, it must be $Z_{ij} = Z_{jk} = \pm 1$, which is the event $X_{ij} = X_{jk} = 1$, and hence

$$P(Z_{ij}Z_{jk} = 1) = P(X_{ij} = X_{jk} = 1) = P(X_{ij} = 1)P(X_{jk} = 1) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

Hence, the only remaining case is $Z_{ij}Z_{jk} = 0$ which gives

$$\mathbf{P}(Z_{ij}Z_{jk}=0) = 1 - \frac{1}{36} = \frac{35}{36},$$

and hence

$$\mathcal{E}\left(Z_{ij}Z_{jk}\right) = \frac{1}{36}$$

Let Z be the total score

$$Z = \sum_{1 \le i < j \le n} Z_{ij}$$

and hence

$$\mathbf{E}(Z) = \mathbf{E}\left(\sum_{1 \le i < j \le n} Z_{ij}\right) = \sum_{1 \le i < j \le n} \mathbf{E}\left(Z_{ij}\right) = 0.$$

For the variance, the second part of the sum consists of the non-repeating pairwise products of Z_{ij} and Z_{kl} for $1 \leq i, j, k, l \leq n, i < j$ and k < l, and finally for non-repeating, i < k or i = k and j < l. Let the indices be $1 \leq i < j < k \leq n$, and the pairs must be one of the following three

$$\left(Z_{ij}, Z_{ik}\right), \left(Z_{ij}, Z_{jk}\right), \left(Z_{ik}, Z_{jk}\right)$$

and hence there are

$$3\cdot \binom{n}{3} = \frac{n(n-1)(n-2)}{2}$$

such pairs.

Hence,

$$\begin{aligned} \operatorname{Var}(Z) &= \sum_{1 \leq i < j \leq n} \operatorname{E} \left(Z_{ij}^2 \right) + 2 \cdot \frac{n(n-1)(n-2)}{2} \cdot \frac{1}{36} \\ &= \binom{n}{2} \cdot \frac{1}{6} + \frac{n(n-1)(n-2)}{36} \\ &= \frac{n(n-1)}{12} + \frac{n(n-1)(n-2)}{36} \\ &= \frac{n(n-1)}{36} \cdot [3 + (n-2)] \\ &= \frac{n(n-1)}{36} (n+1) \\ &= \frac{n(n^2-1)}{36}, \end{aligned}$$

as desired.