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2021.3 Question 1

1. By using the chain rule, we have
dy  dy/dt

dr  dx/dt
12cost — 12sin® t cost
12 cos? tsint

cost —sin®tcost

cos?tsint
1—sin?t
costsint
cos?t
costsint
cost
sint
= cot t.

Hence, at ¢ = ¢, the normal of this curve has gradient — tan ¢, and hence it has equation
Yy — (12sincp — 4sin® cp) = —tanyp (:E — (74COS3 go))
y — 12sin @ + 4sin® p = — tan px — 4 cos® p tan ¢
cos @y — 12sin ¢ cos ¢ + 4sin® ¢ cos ¢ = — sin gz — 4 cos® sin ¢
sin @z 4 cos gy = 12sin ¢ cos ¢ — 4sin® p cos p — 4 cos® @ sin ¢
sin gz 4 cos py = 4sin ¢ cos ¢ (3 — sin” p — cos? cp)
sin ¢z 4 cos py = 8sin ¢ cos ¢.

2
3

The curve z3 + y5 = 4 can be parametrised as = 8cos®t and y = 8sin® ¢:

2 2
3 3

z3 + y% = (8 cos® t) + (8 sin® t)
=4cos’t + 4sin* ¢
=4.

Hence, the gradient of the tangent at a point is
dy dy/dt

dr ~ dz/dt
_ 24sin*tcost
" —24cos2tsint

= —tant,

and the equation of the tangent at the point t = ¢ is
y —8sin® p = —tangp (x — 8cos® cp)
cos py — 8sin® p cos ¢ = — sin gz + 8 cos® psing
sin ¢z + cos py = 8sin ¢ cos ¢ (sin® ¢ + cos® )
sin ¢z 4 cos py = 8sin ¢ cos ¢,
which shows the normal to the original curve is the tangent to this new curve at (8 cos® ¢, 8 sin® ©).

2. By using the chain rule, we have
dy dy/dt

dz ~ dz/dt
cost —cost + tsint
—sint +sint + tcost
tsint

tcost
= tant.
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Hence, at t = ¢, the normal of this curve has gradient — cot ¢, and hence it has equation

y— (sinp — pcosp) = —cotp (x — (cosp + @sinp))
sin gy — sin? ¢ + psin @ cos p = — cos px + cos® @ + @ sin  cos @
cos px + sin py = sin? p + cos? p
cos px + sinpy = 1.

The distance of this normal to the origin is
lcosg -0 +sinp-0—1] 1
Vcos? o +sin? o 7

which is a constant, and hence this curve is tangent to the unit circle 22 + y* =
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2021.3 Question 2

1. For the first row/component in i,

(1 —z z)|b|=1-a+(-z) btz -c

:07

and this is similar for the remaining row and components. Hence, we have

1 -z = a 0
Y 1 —y b]l=10
—z 1 0
as desired.
If the matrix
1 -z =z
y 1 -y
-z =z 1
is invertible, then we must have
-1
a 1 -z =z 0 0
c —z oz 1 0 0

which is impossible, since a, b and ¢ are distinct.

Hence, this matrix is not invertible, and it must have a zero-determinant, meaning

1 -z =z
O=det | vy 1 —y
—z oz 1

=111 () () () by = L (—y) e (—a) g L — a1 (<)
=1—zyz+zyz+yz+ay+zxz
=xy+yz+zr+1,

and hence
xy +yz+ zx = —1.

Since (z +y + 2)? > 0, we have

0< (z+y+2)>

=22 +y* + 22 + 2(zy + yz + 27)
a? b2 2

_ 2. (-1
b—cf P @_pe 2

and hence
a2 b2 2

b-02 le—ap T2 =Y

as desired.
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2. Consider the matrix

-2 x T
y -2y
z z =2,

and for the first row/component in 1,

a
(=2 = 2)|b|=(-2)a+bz+cz
c

(=2)a+ (b+c)x
(—2)a + 2a
Oa

and similarly in the second and third rows/components, and hence

-2 =z T a 0
y -2y bl=10
z z =2, 0

By similar argument as before, this matrix must have a zero determinant as well, and hence

-2 =z T
O=det| v -2 y
z z =2,

= (=2)(=2)(=2) + ayz + ayz — (-2)yz — vy(=2) — x(-2)z
= -8+ 2xyz + 22y + 2yz + 22z,

and hence
ryz +xy +yz + zx =4,

as desired.

Hence, consider
+D)y+D)z+1)=zyz+ay+yz+ze+a+y+z+1=5+z+y+=z
Since a, b, ¢ are all positive real numbers, x,y, z are as well, and hence = + y + z > 0, giving

(z+ D+ 1)(z+1) > 5,

which means

2a+b+c a+2b+c a+b+2c

> 5,
b+c a+c a+b

and hence
(2a+b+c)(a+2b+c)(a+b+2c) > 5(0b+c)(c+a)(a+b)
as desired.

Furthermore, notice that

ot 2a n 2b n 2¢
T z =
Y b+c c+a a+bd
2a 2b 2c
> + +
at+b+c a+b+c a+b+c
_ 2(a+b+c)
T a+4b+e

=2

Hence,
(z+D)(y+1)(z+1)>7,
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which means
2a+b+c¢c a+2b+c a+b+2c

> 7,
b+c a+c a+b

and hence
(2a+b+c)a+2b+c)(a+b+2c)>T(b+c)c+a)a+b)

as desired.
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2021.3 Question 3
1. Notice that

LHS = = (Inj1 + In_1)

B B
(/ (secx—l—tanac)”“dx—l—/ (secx—f—tanx)”_ldx)
0

N = DN

0

N~ N~ N

B
/ (secz + tanz)" " [(secz + tanz)® + 1] d
0

B
/ (secx + tanx)" ! (sec® z + tan® z + 2secx tanx + 1) da
0

B
/ (secz +tanx)" ' - 2 (sec® x + secz tanz) dx
0

B
(secx + tan z)" ! d(sec z + tan z)

Il
S~

= % [(sec z 4 tan a:)"]g

= % ((sec B+ tan 8)" — (sec 0 + tan 0)")
- % ((sec 8 +tan )" — 1)

= RHS,

as desired.

To show the final part, we would like to show that

1 1 )
I, < 3 (Ini1+1In 1) = - ((secB+tanpB)" — 1),

which is equivalent to showing
Lni1+ 11 — 21, > 0.

In+1 + Infl - 2In

B B B
= / (secx + tanz)" Tt dx + / (secx + tanz)" ! da — 2/ (secx + tanz)"™ dx
0 0 0

B
= (secz + tanz)" (2sec®z + 2secatanw — 2secw — 2 tan x)

=

(secx + tanac)n_l (se02 x +tan®z + 2secxtanz — 2secr — 2tanx + 1)

B
(sec x + tanz)" ! [(sec x4 tanz)? — 2 (secx + 2 tan ) + 1}

B
(secx + tanz)" " ((secz + tanz) — 1)°.

[l
o— o —

)nfl

For0 <z < Z secx>0,tanx > 0, and so secz + tanx > 0, (secx + tanx > 0.
2

1

cos T

Hence, the integrand is greater than 0 on (0, 5) C (0, g)

Also, secx = > % =1, and hence secz + tanx — 1 > 0, so ((secz + tanx) — 1)2 > 0.

This shows that the desired equation is greater than 0, and hence, we have the desired inequality
as desired.
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2. Notice that

1 [P
(Jnt1+ JIn-1) = 5/ (secxcos B+ tanz)" ! {(secxcosﬁ +tanz)? 41| dz
0

N =

1 18
= 5/ (secx cos B + tan 33)”_1 [8602 zcos? B+ tan? x + 2sec z tan x cos 3 + 1} dz
0

1 18
3 / (sec x cos B + tan x)"_l (8602 z cos? B+ sec? z + 2sec x tan z cos 6) dzx
0

1 [P
=3 / (seczcos B+ tanz)" ' (2sec® @ — sec? zsin® B + 2sec x tanz cos 3) d
0
B
= / (seczcos B+ tanz)" ! (sec® x + sec z tanz cos B) dz
0

sin? 3
2

B
/ (secx cos B + tanz)" ! sec® x da.
0

The first part of the integral integrates similarly:
B
/ (seczcos B+ tanz)" ! (sec® x + secx tanz cos §) dx
0

B
= / (secz cos f + tanz)" ' d (secx cos B + tan )
0

1 B
= —[(secxcos B + tanx)"],

[(sec Bcos B+ tan B)" — (secOcos B + tan 0)"]

[(1+ tan B)™ — cos™ 3] .

SI=31=—3

The second part of the integral has a positive integrand over (0, ), and hence the integral is
positive, which means

1 B
3 (Jng1 + Jn-1) > / (secx cos B + tanx)”_l (5602 T + sec x tan x cos ﬁ) dz
0

= % [(14 tanB)™ — cos™ f].

We would like to show that J,41 + J,—1 — 2J, > 0 similar as before to show the final result. Note
that

Jn+1 + Jnfl - 2Jn

B
= / (seczcos B+ tanz)" ! [(secxcosﬁ +tanz)® +1 — 2 (seczcos B + tanx)} dz
0

B
= / (secz cos B+ tanz)" " [(secx cos B + tanz) — 1)° dzx
0
>0,
and hence J,, < % (Jnt1 + Jn—1), which shows
1
JIn < - ((1+tan B)™ — cos" B),

as desired.
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2021.3 Question 4

1. Since 0 is the angle between a and b, we have

Let X\ be the angle between m and a. Hence,

COSA = am
|a||m]
a-1(a+b)
m|
a-(a+b)
|a+ b|
l1+a-b
|a + b|
1+ cosé
la+bl|

Similarly, let © be the angle between m and b, and we must have

1+ cosf

COS A = Cos 4 = m
a

Since 0 < A, pp < 7, and cos is one-to-one when restricted to [0, 7], we must have A = u, which

shows that m bisects the angle between a and b.

2. We must have cosa =a-c, and cos =Db - c.

By definition of the projection, we have

aj=a—(a-c)c

=a — cosac,
and hence
aj-c=a-c—cosac-c
= cos — COS
= O’
as desired.

Notice that

1" =a;-ay
= (a—cosac) - (a— cos ac)

—a-a—2cosaa-c+coslac-c

=1-—2cos?a+ cos’a

=1-cos’a

= sin? a.

Since |ai| > 0, and 0 < a < §, sina > 0, we must have

|ai| = |sina| = sin a.
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The angle ¢ is given by

cosp = 2L PL
|a[[by
_ (a—cosac) - (b — cos c)
N sin asin 8
a-b—cosab-c—cosfBa-c+ cosacos Scc

sin o sin 8
cos  — cos a.cos 8 — cos B cos a + cos 3 cos a

sin o sin 8
cos  — cos a.cos 3

sin o sin 8
3. By definition of a projection, we have

m; =m— (m-c)c

:%(a-i—b)— (;(a-i-b)'c)c

:%(aer)— (; (cosonrcosﬁ))c
:%(al‘i‘bl)-

Let v be the angle between m; and a;, we have
m; -a;
cosy = ———
my [[ay|
f(ar+by) -y
ila; 4+ by|sina
aj-a;+b;-a;
|a; + by|sin«

2

sin” a + cos @ sin asin 8

|a; 4+ by |sin«

sin? & + cos§ — cos a cos

\al + b1| sin «v
Similarly, let 7 be the angle between m; and by, we have

sin? B + cos @ — cos a cos f3
|31 + b1| sin 3

COST =

Since 0 < v,7 <7, v =7 if and only if
COSV = COST

sin® a + cos # — cos a cos B _ sin? 8 4 cos 6 — cos avcos f3
|a; + by|sina N |a; + by|sin g

sin 8 (sin2 o+ cosf — cosacos B) = sina (sin2 B + cos @ — cos a cos ﬂ)

(sinasin B + cos acos B) (sin o — sin ) = cos O(sin o — sin 3)

)

sin asin B(sin o — sin 8) + cos a cos B(sin o — sin 3) = cos (sin o — sin )

)
(cos(a — B) — cosB) (sina — sin B) = 0.

This is if and only if sin« = sin 8, or cosf = cos(a — ).

s

Since 0 < «, 8 < 7, and sin is one-to-one when restricted to (0, 5

and only if a = .

), the first condition is true if

Hence, m; bisects the angle between a; and by if and only if & = 8 or cos@ = cos(a — ), as
desired.
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2021.3 Question 5

1. When the curves meet, the r values and the 6 values must be both equal, and hence

a+2cosf =2+ cos260
a+2cosh=2+2cos6—1
2c0s%0 —2cosf+1—a=0,

as desired.
By differentiating with respect to theta, for the two curves to touch, we must have
%(a + 2cosf) = %(2 + cos 20)
—2sin 6 = —2sin 26
sin § = sin 26
sinf = 2sin 6 cos
sinf(2cosf — 1) = 0.

This means, either for the value of sinf = 0 it satisfies the first equation, or for the value of
2cosf — 1 = 0 it satisfies the first equation.

For the first case, we must have cos§ = £1, and hence

a=2cos?6 —2cosh + 1
=2(£1)? —2(£1) + 1
=3+2,

and soa =1 or a = 5.

For the second case, we have cosf = %, and hence

a=2cos?0 —2cosf+1

HORIOE

1
2 )
as desired.

2. For the case where a = 3, the curves meet precisely for cosf = 3 only, and hence § = +%, which
givesr:%+1:%.
Both curves are symmetric about the initial line, since cos is an even function.
When 6 =0, r1=a+2=%,andr2=2+1:3.

For 71, since r > 0, we must have
1
5 +2cosf >0
1
cosf > -

which means it only exists for

When 0 = &3, r; = % +2cos+% = %

For all values of 6, we must have ro > 0. When ¢ = 7w, 1o = 2+ 1 = 3, and for § = +7,
1 :%—i-cosig = %,T2=2+cosi7r:1.

Hence, the two curves are as follows. All coordinates are in (r, 6).
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>
I
vl

6 = arccos (—i)

6 = —arccos (— %) 0=-=
3. e a = 1. For rq, since r > 0, we must have
1+4+2cosf >0
1
cosf > ——,
2

which means —%71' <6< %71'.
The two curves meet when

2cos?0 —2cosh =0
cosf(cosf — 1) =0,

which is when cosf = 0 or cosf = 1.
For cos@ = 0, this means § = +7, and r = 1. For this value of 6, the two curves cross.
For cosf = 1, this means # = 0, and » = 3. For this value of 6, the two curves touch.
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[SIE

e a=2>5. For rq, r >0 for all 6.
The two curves meet when

2c0s260 —2cosf =4
cos?f —cosf—2=0

(cos@ —2)(cosf+1) =0,

which is when cosf = —1, since cosf # 2.

For cosf = —1, this means 6§ = 7, and r = 3. For this value of 6, the two curves touch.
When § =0, =54+2=7,and 7o =2+ 1 = 3. When 0 = :i:%w, 71 :5—|—2cos:t%7rz5,
ro =24 costmw = 1.

Eason Shao Page 332 of 430



STEP Project Year 2021 Paper 3

Eason Shao Page 333 of 430



STEP Project Year 2021 Paper 3

2021.3 Question 6
1. By multiplying by cot a on top and bottom of the fraction, we have

T + cot a
= t —_—
fo(@) = are an(l—xcota)

= arctan v+ tan (% _ )
1 —xtan (1 —a)

2
T
= arctan tan (arctanx + 5~ a) .
Since arctanx € (—g, a) U (a, g), we have
T s m
arctan x + 3~ [ AS (—a, 7) @] (777r - a) .
Hence, we can simplify this to
T
fa(z) = arctan tan (arctanx + 3 a)

_ Jarctanr + § —a, =z <tana,
—o, x>tana.

INERN

arctanx —
Hence, by differentiating with respect to x, the constants differentiate to 0, and hence

d
fl(z) = = arctan x
1
1422
as desired.

The graph consists of 2 branches of arctan, as the simplified expressions suggests. We have the
following limiting behaviours of f,:

™
lim fo(z) = lim arctanz+ - — a = —a,
T——00 T——00 2
. ™
lim  fo(x) = =,
r—tana— 2
lm  fol2) = -3
im r)=——,
z—tan at * 2
™
lim f,(x) = lim arctanz — - — a = —aq,
T—00 T—00 2
which shows that f, has a horizontal asymptote with equation y = —a.

For the intersection with the y-axis,

fa(0) = arctan 0 + T _a=l_ a,
2 2
and for the intersection with the z-axis,
fa(z) =0 <= ztana+1=0 < z = —cota.

The graph looks as follows.
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The domain of this new graph is 2 € R\ {tan a, tan 8}. By considering the functions in the different
corresponding ranges, we have

(arctan(x) +
fa(x) = fa(x) = < (arctan(z) —

(arctan(z) —

) — (arctan(z) +
) — (arctan(z) +
) — (arctan(z) —

fﬂ):ﬂ—a, r < tan
—B)=B-—a—m tana <z <tanf,

-B)=B-aq, tan 3 < x.

INERSIERNIE]
I

e o 0

INERNIERNE]

Hence, the graph looks as follows.

O | taha tanp

b—a—m —

2. By differentiation, we have

1
/ 2
r)= ———5—CO0ST — ———sec”x
g() 1—sin’zx 1+ tan?

CoOsT SGC2 x

T cos?z |secx]

secz — [sec z

secx —secx = 0, 0<z<imorir<az<or,

secx — (—secz) = 2secx, im<az<3m,
since sec x takes the same sign as cosx, which is negative when %ﬂ' <z < %Tl’, and positive when
0<z< %71’ or %w < x < 27 within the range.

For %71' <z< %ﬂ', we must have
g(x) = Intanz + secz| + C = In (—tanz — secx) + C,

and by verifying
g(m) = artanh(0) — arsinh(0) = 0,
we can see C' = 0.

Hence, for 0 <z < %w and %7‘(’ < x < 27 respectively, g(x) is constant, and notice that

9(0) = g(2m) =0,
and hence
(2) In(—tanz —secz), im<az<im,
) =
g 0, 0§x<%7r0r%7r§27r.
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2021.3 Question 7
1. Notice that

_exp(ifl) + exp(ip)
exp(if) — exp(iy)

(i0) + exp(ip) exp(—if) — exp(—iyp)
(i)

exp(if) — exp(ip) exp(—if) — exp(—ip)
1+ exp(ip — i6) — exp(if — ip) — 1
1 —exp(if — i) — exp(ip — i) + 1
explily — 6)) — exp(—i(p — 0))
2 — exp(—i(p — 0)) — exp(i(p — 0))
2isin(p — 0)
2 —2cos(p —0)
isin(p — 0)
1 —cos(p —0)
0—6 _ p—b

z~251n7cosT

: —0
1—(1—2sin® £%)

. p—0 p—0
21 sin 5 cos B

2 p—0
2

2sin

) p—10
= t
1co 5

as desired.

The modulus of z is ‘cot “’T_a‘. The argument of z is =5.

2. Let a = exp(ia), and b = exp(if), where a — b # 2n7 for integer n (this ensures that A and B are
distinct). We must have z = a + b = exp(ia) + exp(if), and b — a = exp(if) — exp(ic).

The vectors representing the two complex numbers are perpendicular, if and only if their argument
differ by £7%, if and only if their ratio has argument +7. Notice that the ratios

OX a+b

AB  b—ua
_exp(ia) + exp(if)
~ exp(iB) — exp(ia)

takes the same form as z before, and hence has argument 4-7. This hence means OX is perpen-
dicular to AB.

3. Similarly, let a = exp(icr), b = exp(i3), and ¢ = exp(i7), where no pair of a, 8 and ~ differ by some
multiple of 27 (which ensures that A, B, C' are distinct points).

If H is the orthocentre of triangle ABC, then
h=a+b+c=exp(ia) + exp(iff) + exp(iy),
and hence
AH =h—a=b+ c=exp(ifB) + exp(iy),
BC =c¢—b=exp(iy) — exp(iB).

If h # a, then AH = b+ ¢ # 0, then the angle between AH and BC is given by the argument of
the ratio of the complex numbers representing them, and notice

AH  exp(iB) + exp(iv)
BC ~ exp(iy) — exp(iB)’

which takes the same form of z in the first part. Hence, the argument of this must be £% since
b+ ¢ # 0, which shows that AH is perpendicular to BC.

This means that either h = a, or AH is perpendicular to BC, as desired.
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4. Similarly, let a = exp(ia), b = exp(if3), ¢ = exp(iy) and d = exp(id), where no pair of «, 3, v and
¢ differ by some multiple of 27 (which ensures that A, B, C, D are distinct points). Hence,

q="b+c+d=exp(iB) + exp(iv) + exp(id),

and the midpoint of AQ, M, represented by complex number m, is given by

at+b+c+d
—

By symmetry, the midpoint of BR, C'S and DP must also be M.

This means that by an enlargement of scale factor —1 about M, A will be transformed to @, B to
R, Cto S, and D to P.

Hence, ABCD is transformed to PQRS by an enlargement of scale factor —1, with centre of
enlargement being W, the midpoint of AQ.
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2021.3 Question 8

1. We show this by induction on n.

We first consider the base case where n = 1. Notice LHS = z; = a, and

RHS=2+4"%a—-2)=2+(a—2) =a.

Hence, LHS > RHS is true.

Now, assume that the original statement
Ty > 244" (a—2)

is true for some n = k.

Consider the case where n = k + 1. We first notice that since a > 2, we must have

T, >2+4""a—2)>0.

Hence, we have

LHS = 2411
=22 -2
> (2445 (a—2))" -2
=444%2q -2 +4-4a—-2)-2
=2+4%a —2) + 4% %(a - 2)?
> 24 4k+TD=1(g —9)
= RHS,

and this shows that the original statement is true for the case n = k + 1 as well.

Hence, the original statement is true for the base case n = 1, and given it holds for n = k, it holds
for n = k+ 1. By the principle of mathematical induction, it must hold for all integers n > 1 given
a > 2, as desired.

2. o If direction. We are given that |a| > 2. If a < 0, we must have a < —2, but notice that for
1 =a, vy = a® —2, and for 1 = —a, 2 = (—a)? — 2 = a? — 2. Hence, if the first term only
differs by a plus/minus sign, all the terms including and after the second term will behave
identically. This means we only have to consider the case a > 2, and since

Ty > 244" a - 2),
and the right-hand side diverges to co as n — co, we can conclude that

lim z, = oo,
n—oo

as desired.
e Only-if direction. We attempt to prove the contrapositive of the only-if direction, i.e. given
that |a| < 2, we want to show that x,, does not diverge to co.
We would like to show that |z,| < 2 for all n € N.
The base case where n = 1 is true, since 0 < a < 2.
Now, assume that this is true for some n = k, i.e.

|z, <2 = —2<2,<2 <= 0<22 <4
Forn=%k+1,
Ty = Tpp1 = Tp — 2,

and hence
—2< Try1 < 2 <— \xk+1| <2.
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So this statement is true for the base case where n = 1, and given it holds for some n = k it
holds for the case n = k+1. Hence, by the principle of mathematical induction, this statement
is true for all n € N.

This means that x,, is bounded above and below, and hence it cannot diverge to infinity. This
proves the contrapositive of the only-if direction, and hence the only-if direction is true.

In conclusion, we have shown that z, — co as n — oo if and only if |a| > 2.

3. If this is true for all n > 1, then this is true for n = 1. On one hand,
_ Am Aa

Y1 =
9 a2 -2’

and on the other hand

2—4  \f(a>-22-4 Vat—4a® aVa® -4

T a?—2 a?—2  a2-=2
Hence, we must have
A=+a? -4
A2 =qg% -4
a?=A%+4

a=+A2%+4,

since a > 2.
We still have to show that this a gives the desired relation for every n > 1.
Notice that by definition,

n+1
AHi:l xT;
Yn+1 = ———
Tn42
n 2
_ AHi:l . Tnt1

Tn+1 Tn42
2
_ ‘rn+1
=Yy —.
Tn42

We aim to show this by induction on n. The base case where n = 1 is shown above.

Now, assume that

2
Ty — 4
Yn =
Tn+1
for a certain value of n = k.
Forn=k+1,
Yn = Yk+1
2
T
+1
frd yk' . n
Tn42
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which is precisely the original statement for n = k + 1.

By the principle of mathematical induction, for a = v/ A2 + 4, we have shown that this desired
statement holds for the base case n = 1, and given that it holds for some n = k, we can show it
holds for n = k + 1. Hence, by the principle of mathematical induction, we have that

—4

2
wn-i—l

Yn =
Tn+1

for every value of n > 1 for this certain value of a = v/ A2 + 4.

Hence, for the value a = v/ A? + 4, we have the statement holds for all n > 1. We have also shown
that if the statement holds for all n > 1, it must be the case that a = v/ A2 + 4. Hence, for precisely

this value of a = v/ A2 + 4, we have
\/ a1 +4

Tn+1

Yn =

For this value of a > 2, we have x,, — co as n — oco. Hence,

1‘31_,'_1 +4 4
o= 1
Tn+1 Th+1

converges to 1 as n — oo.
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2021.3 Question 11
1. From the definitions, X ~ Exp(\), and Y = | X |.

Hence, for n > 0,

e
— _e—)\(n-‘rl) +6—An
— e—nA (1 _ e—)\) )

as desired.

2. Since Z = X — Y, we know that Z = {X} where {z} stands for the fractional part of .

Hence, for 0 < z < 1, we have

P(Z <2)=P({X} <2)
=P(X-Y <2)

Y P(X<Y+2Y=n)

:ZP(n§X<n+z)

n=0
0 n+z
= Z / A-e M dx
n=0""
- S e
n=0
_ i |:767)\(n+z) + ef)m,:|
n=0
_ Z e—n)\ (1 _ e—kz)
n=0
_ (1 _ e—/\z) Z e—n/\
n=0
s 1
:(1_6 A ) 1— e
1—e
=T e

as desired.

3. It must be the case that 0 < Z < 1, and the cumulative distribution function of Z is given by, for
0<2z<1,
1— 67)\2

2 =1

By differentiating with respect to z, we get the probability density function of Z is given by, for
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0<2<1,
fz(z) = Fy(2)
d1- e M
S dzl—e A
_ -2
- 176—)\'()\'6 Z)
/\e—)\z
1—e
and zero everywhere else.

Hence, the expectation is given by
1
E(Z) :/ zfz(z)dz
0
1 -z
Aze
= d
/0 1—ex
A 1
= 1. / ze M dz
—e 0

1 /1 N
= - zde ?
1—e > Jp

]. [ A 1 ! Y
— _ z o zd
= O /Oe z}
- 1
1 w e—)\z
__1_€_>\ _ze + h\ L
1 a —A 1
= V- (o+=
e (7 5) - (0+3))
o 1—e 2
_1—67)‘—)\67)‘
A=)

4. Since 0 < z1 <29 <1,wehave n <n+z; <n+ 22 <n+ 1, and hence
PY=n2<Z<z)=PY=n2z<X-Y <z)

=Pn+z21 <X <n+z)
n-‘er

/ A
n+z1

_Azx1ntz2
[ e ]nJrzl
e—)\(n+zl) —A(n+z2)

_ e—)\n [e—/\zl _ e—>\22] )

On the other hand, notice

PY=n)P(z1 < Z<2)=PY =n)(P(Z < 22) —P(Z — z1))
OO I e A% 1—e
= (1—em)em™ I—e* 1—eA
= (1= e - (1)

—nA [e—Azl —)\22] )

=€ — €

Hence, we have
PY=n,21<Z<2z)=PY =n)P(z1 < Z < z9),

and we can conclude that Y and Z are independent.
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2021.3 Question 12

1. Let X; be the outcome of player i in a die roll. Then we have

1, Xi=X,
Xij = ’ /
0, Xi#Xj.

Hence, we have

and hence P(X;; =0) =1 — % = %. Furthermore,

and hence 9
) 5 1 1 5
Var (X”) =E (XZJ) — (XZJ) =—-.1- — = —.

For any 1 <1 < j <k <n, we have
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n:lm;ﬁn6
_g.5.1.11
B 6 6 6
5

and

Hence, X;; and X, are independent, and therefore X5 is independent of Xo3.

Similarly, for 0 < ¢ < j < k < n, we have X;; is independent of X, and X is independent of
Xjr. Furthermore, for 0 <i < j <n and 0 < k < p < n, where none of 4, j, k, [ are equal, we have
Xi; is independent of Xj; since the outcomes are completely irrelevant and independent.

Hence, X;; s are pairwise independent. Let X be the total score:

X= > Xy

0<i<j<n
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and hence we have

and

2. Define

and hence

Hence,

as desired.

Var(X

)

= Var

> Xy

0<i<j<n

Z Var (X;;)

0<i<j<n

Var(Y) = E (Y?) — E(Y)?
m 2
()
i=1
=F ZY2+ZYY
i#£j
=E ZY2+2 Y vy
1<i<j<m
=E ZY2+22 Z Y;Y;
i=1 j=i+1
:i (Y?) +2Z Z E (Y,
=1 =1 j=i+1
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3. By definition, we have
1, X; = X, is even,
Ziy =4 -1, X;=Xjisodd,
0, Xi # X;.

Hence, we have P(Z;; = 0) = P(X;; =0) = %, and

P(Zij=1) =P(Zi; = -1) = % (1-P(Z; =0))
= % (1-P(Xi; =0))
1 5
~2 <1 - 6>
B 1
- =,

which means E (Z;;) = 0.

Consider Z12 = 1 and Zo3 = —1. If Z15 = 1 and Zs3 = —1, this means X; = X5 are both even,
and X9 = X3 are both odd. This is impossible, and hence

P(Z1g =1, Za3 = —1) = 0.

On the other hand,
1 1 1
(Z12 = 1) P(Z2s ) w7’
and so Z12 and Zs3 are not independent.
Notice that X;; = Z7; and so E (Zf]) =E(X;;) = ¢
We can say for 1 <4< j <nand1l <k <1[<n, where none of ¢, j,k,l are equal, since X;, X;, X,
and X; are independent, we must have Z;; is independent of Zj;, and hence

E(ZijZw) =E(Zi;) E(Zi) = 0.
However, for 1 <i < j < k < n, we have
P(ZijZj, = -1)=P(Zij = 1. Zjr = 1) + P(Z;; = -1, Zj, = 1) = 0.
For the event Z;;Z;, = 1, it must be Z;; = Z;, = +1, which is the event X;; = X;; = 1, and

hence
P(ZijZj =1)=P(X;; =X;s=1)=P(X;; =1)P(Xj =1) =

S| =
| =
w
(@)

Hence, the only remaining case is Z;; Z;;, = 0 which gives

1 35
P(Z;iZj=0)=1— — ==,
(ZiiZi = 0) 36 36
and hence

1
E(ZijZjx) = 35

Let Z be the total score

Z= > Zj

1<i<j<n
and hence

EZ)=E| Y Z;|= ) E(Zj=o.

1<i<j<n 1<i<j<n
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For the variance, the second part of the sum consists of the non-repeating pairwise products of Z;;
and Zy for 1 < 4,5,k 01 <n,i < jand k < [, and finally for non-repeating, i < k or ¢ = k and
j <. Let the indices be 1 < i < j < k < n, and the pairs must be one of the following three

(Zij, Zir) , (Zij, Zj) » (Ziks Zj)

;. <n> _n(n-1)(n-2)

and hence there are

3 2
such pairs.
Hence,
B 9 nn—1)(n-2) 1
Var(Z) = Z E(Z}) +2 — '3
1<i<j<n
_(n 1+n(n—1)(n—2)
- \2/) 6 36
_n(n—1) n nn—1)(n—2)
12 36
n(n—1)
n(n —1)
= 1
36 (n+1)
~ n(n?-1)
36
as desired.
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