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2019.3 Question 1

1. When k = 1,
ẋ = −x− y, ẏ = x− y.

Hence,

ẍ = −ẋ− ẏ

= −ẋ− (x− y)

= −ẋ− x+ y

= −ẋ− x+ (−x− ẋ)

= −2ẋ− 2x,

and this gives
ẍ+ 2ẋ+ 2x = 0.

The auxiliary equation to this differential equation is

λ2 + 2λ+ 2 = 0,

which solves to
λ = −1± i.

The general solution for x is hence

x(t) = exp(−t) (A sin t+B cos t) .

This means

ẋ(t) = − exp(−t) (A sin t+B cos t) + exp(−t) (A cos t−B sin t)

= −x(t) + exp(−t) (A cos t−B sin t) ,

and hence
y(t) = − exp(−t) (A cos t−B sin t) = exp(−t) (B sin t−A cos t) .

When t = 0, x = x(0) = B = 1, y = y(0) = −A = 0. Hence,

x(t) = exp(−t) cos t, y(t) = exp(−t) sin t.

The graph of y against t looks as follows:

t

y

y = exp(−t)

y = − exp(−t)

1

−1

O

y = exp(−t) sin t

π
2

π 3π
2

2π
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y is greatest at the first stationary point of y, as shown in the graph. Note that

ẏ = x− y = exp(−t) (cos t− sin t) ,

and hence
ẏ = 0 ⇐⇒ cos t = sin t ⇐⇒ tan t = 1,

and the smallest positive solution to this is t = π
4 . The coordinate of the point is hence

(x, y) =

(
exp

(
−π

4

)
·
√
2

2
, exp

(
−π

4

)
·
√
2

2

)
.

Similarly, the graph of x against t looks as follows:

t

x

x = exp(−t)

x = − exp(−t)

1

−1

O

x = exp(−t) cos t

π
2

π 3π
2

2π

x is smallest at the first stationary point of x, as shown in the graph. Note that

ẋ = −x− y = − exp(−t) (cos t+ sin t) ,

and hence
ẋ = 0 ⇐⇒ cos t = − sin t ⇐⇒ tan t = −1,

and the smallest positive solution to this is t = 3π
4 . The coordinate of the point is hence

(x, y) =

(
− exp

(
−3π

4

)
·
√
2

2
, exp

(
−3π

4

)
·
√
2

2

)
.

Without the exp(−t) factor, the x-y graph will simply be a circle, and with this factor, it will be
a spiral with exponentially decreasing radius. This is the polar curve r = exp(−θ). Hence, the x-y
graph looks as follows.

x

y(
exp

(
−π

4

)
·
√
2
2 , exp

(
−π

4

)
·
√
2
2

)

(
− exp

(
− 3π

4

)
·
√
2
2 , exp

(
− 3π

4

)
·
√
2
2

)
O

1

exp
(
−π

2

)

exp (−π)
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2. Since ẋ = −x, we must have x(t) = A exp(−t), and since x(0) = 1, we have A = 1 and x(t) =
exp(−t).

We have
ẏ = exp(−t)− y,

and hence
ẏ + y = exp(−t).

Multiplying both sides by exp(t), we have

etẏ + ety = 1,

and hence
dyet

dt
= 1,

which gives
yet = t+B,

and hence
y = exp(−t)(t+B).

Since y = 0 when t = 0, we must have B = 0, and hence

y = t exp(−t).

Note that
dy

dt
= exp(−t)− t exp(−t),

and hence dy
dt = 0 when t = 1, which is when

(x, y) =
(
e−1, e−1

)
.

Note that
dx

dy
= − exp(−t),

and hence dx
dt = 0 when t = 0, which is when

(x, y) = (1, 0),

and the tangent to the curve at this point will be vertical.

Hence, the graph will look as follows:

x

y

(e−1, e−1)

O 1
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2019.3 Question 2

1. Let y = 0, and we have
f(x+ 0) = f(x) = f(x)f(0),

so either f(x) = 0 or f(0) = 1 for all x.

Assume, B.W.O.C., that f(0) ̸= 1, then we must have f(x) = 0 for all x, which means f ′(x) = 0,
contradicting with f ′(0) = k ̸= 0.

Hence, f(0) = 1.

By definition of the derivative, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

f(x)f(h)− f(x)

h

= f(x) lim
h→0

f(h)− 1

h
,

and letting x = 0, we also have

k = f ′(0) = f(0) lim
h→0

f(h)− 1

h
= lim

h→0

f(h)− 1

h
,

and hence
f ′(x) = kf(x)

as desired.

This differential equation solves to
f(x) = Aekx,

and with the condition f(0) = 1, we have A = 1, and hence

f(x) = ekx

for all x.

2. Let y = 0, and we have

g(x+ 0) = g(x) =
g(x) + g(0)

1 + g(x)g(0)
.

This means that
g(x) + g(x)2g(0) = g(x) + g(0),

which gives
g(0)

[
g(x)2 − 1

]
= 0.

Since |g(x)| < 1 for all x, we must have g(x)2 − 1 < 0, and hence g(0) = 0.

By the definition of the derivative,

g′(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

g(x)+g(h)
1+g(x)g(h) − g(x)

h

= lim
h→0

g(x) + g(h)− g(x)− g(x)2g(h)

h(1 + g(x)g(h))

= lim
h→0

g(h)
[
1− g(x)2

]
h(1 + g(x)g(h))

=
[
1− g(x)2

]
lim
h→0

g(h)

h(1 + g(x)g(h))
.
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Considering the limit, we have

lim
h→0

g(h)

h(1 + g(x)g(h))
= lim

h→0

g(h)/h

1 + g(x)g(h)

=
limh→0 [g(h)/h]

limh→0 [1 + g(x)g(h)]

=
limh→0 [g(h)/h]

1

= lim
h→0

g(h)

h
,

and hence

g′(x) =
[
1− g(x)2

]
lim
h→0

g(h)

h
.

Let x = 0, and we have

k = g′(0) = 1 · lim
h→0

g(h)

h
,

hence giving the differential equation

g′(x) = k
[
1− g(x)2

]
.

This rearranges to give
dg(x)

1− g(x)2
= k dx,

and hence [
1

1 + g(x)
+

1

1− g(x)

]
dg(x) = 2k dx,

which gives
ln|1 + g(x)| − ln|1− g(x)| = 2kx+ C.

Let x = 0, we have g(0) = 0, and hence C = 0, and hence

1 + g(x)

1− g(x)
= exp(2kx),

and hence
1 + g(x) = exp(2kx)− exp(2kx)g(x),

which gives

g(x) =
exp(2kx)− 1

exp(2kx) + 1
=

exp(kx)− exp(−kx)

exp(kx) + exp(−kx)
= tanh(kx).
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2019.3 Question 3

1. Since L1 is a line of invariant points, for each point (x, y) ∈ L1, we have(
a b
c d

)(
x
y

)
=

(
x
y

)
,

and hence
ax+ by = x, cx+ dy = y.

Hence,
(1− a)x = by, (1− d)y = cx,

and hence
(1− a)x(1− d)y = bycx,

which simplifies to
[(a− 1)(d− 1)− bc]xy = 0.

If the line L1 is the line x = 0, then by = 0 for all y and dy = y for all y, giving d = 1 and b = 0.
Hence, (a− 1)(d− 1)− bc = 0.

Similarly, if the line L1 is the line y = 0, then ax = x for all x and cx = 0 for all y, giving a = 1
and c = 0. Hence, (a− 1)(d− 1)− bc = 0.

Otherwise, there must be a point (x, y) ∈ L1 such that xy ̸= 0, which means (a−1)(d−1)−bc = 0.

Hence, in all cases, we must have (a− 1)(d− 1) = bc as desired.

If L1 does not pass through the origin, then y = mx+ k for some k ̸= 0, or x = k for some k ̸= 0.

In the first case, we have
ax+ b(mx+ k) = x,

and hence
(a+ bm− 1)x+ bk = 0

for all x, meaning a+ bm− 1 = 0 and bk = 0.

Similarly,
cx+ d(mx+ k) = mx+ k,

and hence
(c+ dm−m)x+ (d− 1)k = 0

for all x, meaning c+ dm−m = 0 and (d− 1)k = 0.

Since k ̸= 0, bk = 0 and (d− 1)k = 0 implies b = 0 and d = 1 respectively. Putting those back into
the first corresponding equations, this solves to a = 1 and c = 0, which means

A =

(
1

1

)
= I2.

In the second case where x = k for some k ̸= 0, we have

ak + by = k,

and hence
by + (a− 1)k = 0

for all y, meaning b = 0 and (a− 1)k = 0.

Similarly,
ck + dy = y,

and hence
(d− 1)y + ck = 0

for all y, meaning d− 1 = 0 and ck = 0.
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Since k ̸= 0, (a− 1)k = 0 and ck = 0 implies a = 1 and c = 0 respectively. Hence,

A =

(
1 0
0 1

)
= I2.

Therefore, L1 not passing through the origin must imply that A is precisely the 2 by 2 identity
matrix.

2. If (x, y) is an invariant point, we have

(a− 1)x+ by = 0, cx+ (d− 1)y = 0.

If b = 0, then (a− 1)(d− 1) = bc = 0, and hence a = 1 or d = 1.

In the case where a = 1, the first equation is trivially true, and the second equation simplifies to

cx+ (d− 1)y = 0,

and hence the line L : cx+ (d− 1)y = 0 is a line of invariant points.

In the case where d = 1, the original equation simplifies to

(a− 1)x = 0, cx = 0,

and hence the line L : x = 0 is a line of invariant points.

If b ̸= 0, we want to show that all points on the line L : (a − 1)x + by = 0 satisfy the second
equation. We multiply (d− 1) on both sides of the equation, and hence

(a− 1)(d− 1)x+ b(d− 1)y = 0,

which is
bcx+ b(d− 1)y = 0.

Since b ̸= 0, we divide b on both sides, giving

cx+ (d− 1)y = 0,

which is precisely the second equation. Hence, L : (a − 1)x + by = 0 is a line of invariant points
under this case.

3. We have L2 : y = mx+ k, k ̸= 0, we therefore have(
a b
c d

)(
x

mx+ k

)
=

(
X

mX + k

)
,

and hence
ax+ b(mx+ k) = X, cx+ d(mx+ k) = mX + k.

Putting the first equation into the second one gives us

cx+ d(mx+ k) = m(ax+ b(mx+ k)) + k,

which simplifies to
(c+ dm− am− bm2)x+ (dk −mbk − k) = 0,

which is
(bm2 + (a− d)m− c)x+ (mb− d+ 1)k = 0.

Since this is true for all x and k ̸= 0, we must have

bm2 + (a− d)m− c = 0, bm− d+ 1 = 0.

If b = 0, then
(a− d)m = c, d− 1 = 0,
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and hence d = 1, (a− 1)m = c, and

(a− 1)(d− 1) = 0, bc = 0,

which gives
(a− 1)(d− 1) = bc.

If b ̸= 0, the second of those equations solve to

m =
d− 1

b
,

and putting this back into the first equation, we have

b · (d− 1)2

b2
+

(a− d)(d− 1)

b
− c = 0,

and multiplying both sides by b gives

(d− 1)2 + (a− d)(d− 1) = bc,

and hence
(a− 1)(d− 1) = bc.

Therefore, in both cases, we have (a− 1)(d− 1) = bc, as desired.
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2019.3 Question 4

1. We look at different cases depending on the value of n.

• When n = 1, P (x) = x− a1 has root a1, and thus is reflective for all a1 ∈ R.
• When n = 2, P (x) = x2 − a1x+ a2 has root a1, a2, and hence by Vieta’s Theorem,

a1a2 = a2, a1 + a2 = a1.

This means a2 = 0 and a1 can take any real value, and hence

P (x) = x2 − a1x

is reflective for a1 ∈ R.
• When n = 3, P (x) = x3 − a1x

2 + a2x− a3 has root a1, a2, a3, and hence by Vieta’s Theorem,
a1a2a3 = a3,

a1a2 + a1a3 + a2a3 = a2,

a1 + a2 + a3 = a1.

The final equation implies that a2 + a3 = 0, and hence with the second equation gives that
a2a3 = a2, which means either a2 = a3 = 0, or a2 = −1, a3 = 1.

When a2 = a3 = 0, a1 can take any real value, and when a2 = −1, a3 = 1, we must have
a1 = −1.

So the degree 3 reflective polynomials are

P (x) = x3 − a1x
2

for all a1 ∈ R, and
P (x) = x3 + x2 − x− 1.

2. By Vieta’s Theorem, we have
n∑

i=1

ai = a1,

and hence
n∑

i=2

ai = 0.

Squaring both sides gives

0 =

(
n∑

i=2

ai

)2

=

n∑
i=2

a2i + 2

n−1∑
i=2

n∑
j=i+1

aiaj .

By Vieta’s Theorem, we also have
n−1∑
i=1

n∑
j=i+1

aiaj = a2,
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and notice that

2a2 = 2

n−1∑
i=1

n∑
j=i+1

aiaj

= 2

n∑
j=2

a1aj + 2

n−1∑
i=2

n∑
j=i+1

aiaj

= 2a1

n∑
i=2

ai +

(
−

n∑
i=2

a2i

)

= 2a1 · 0−
n∑

i=2

a2i

= −
n∑

i=2

a2i ,

as desired.

For the final part, assume B.W.O.C. that n > 3. By rearrangement, we have

a22 + 2a2 + 1 = 1−
n∑

i=3

a2i ,

and the left-hand side is (a2 + 1)2 which is always non-negative. Hence,

n∑
i=3

a2i ≤ 1.

Since ai are all integers, precisely one of the ais for 3 ≤ i ≤ n is ±1, and all the rest are 0. Since
an ̸= 0, we conclude that an = ±1, and a3 = · · · = an−1 = 0.

But notice from Vieta’s Theorem that

an =

n∏
i=1

ai = 0

since a3 must be 0, which leads to a contradiction.

Hence, we must have n ≤ 3.

3. The reflective polynomials for n ≤ 3 are

• P (x) = x− a1 for a1 ∈ Z,
• P (x) = x2 − a1x for a1 ∈ Z,
• P (x) = x3 − a1x

2 for a1 ∈ Z, and
• P (x) = x3 + x2 − x− 1.

For n > 3, we must have an = 0, and hence

P (x) = xn − a1x
n−1 + a2x

n−2 − · · ·+ (−1)n−1an−1x

= x
(
xn−1 − a2x

n−2 + a2x
n−3 − · · ·+ (−1)n−1an−1

)
.

Let
Q(x) = xn−1 − a2x

n−2 + a2x
n−3 − · · ·+ (−1)n−1an−1

If P (x) is reflective, then the roots to P (x) are a1, a2, . . . , an−1, 0, and hence the roots to Q(x) are
a1, a2, . . . , an−1, which shows that Q(x) is reflective as well.

This means that an integer-coefficient reflective polynomial with degree n > 3 must be x multiplied
by another integer-coefficient reflective polynomial, and repeating this process, we can conclude it
must be some power of x multiplied by some integer-coefficient reflective polynomial with degree
n ≤ 3.

Hence, all integer-coefficient reflective polynomials are
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• P (x) = xr(x− a1) for a1 ∈ Z, r ∈ Z, r ≥ 0, and

• P (x) = xr(x3 + x2 − x− 1) = x2(x+ 1)2(x− 1) for r ∈ Z, r ≥ 0.
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2019.3 Question 5

1. By quotient rule,

f ′(x) =

√
x2 + p− x · 1

2 · 2x · 1√
x2+p

x2 + p

=

√
x2 + p− x2√

x2+p

x2 + p

=
p

(x2 + p)
√

x2 + p
.

This gives

0 < f ′(x) ≤ 1
√
p
,

with the equal sign taking if and only if x = 0.

limx→∞ f(x) = 1, so y = 1 is a horizontal asymptote to the function.

Hence, the graph looks as follows:

x

y

y = 1

y = f(x)

O

2. Since y = cx√
x2+p

= cf(x), we have

dy

dx
= cf ′(x) =

cp(√
x2 + p

)3 ,
and hence

dy =
cp(√

x2 + p
)3 dx.

The integral can therefore be simplified as

I =

∫
dy

(b2 − y2)
√

c2 − y2

=

∫
1(

b2 − c2x2

x2+p

)√
c2 − c2x2

x2+p

· cp(√
x2 + p

)3 dx

=

∫
cpdx

(b2(x2 + p)− c2x2)
√
c2(x2 + p)− c2x2

=

∫
cpdx

[(b2 − c2)x2 + b2p]
√
c2p

=

∫ √
p dx

b2p+ (b2 − c2)x2
.

Let p = 1, and we have

I =

∫
dx

b2 + (b2 − c2)x2

as desired.
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Hence,

I =

∫
dx

b2 + (b2 − c2)x2

=
1

b2 − c2

∫
dx(

b√
b2−c2

)2
+ x2

=
1

b2 − c2
·
√
b2 − c2

b
arctan

√
b2 − c2x

b
+ C

=
1

b
√
b2 − c2

arctan

√
b2 − c2x

b
+ C.

Let b =
√
3 and c =

√
2, and hence

I =
1√

3
√
3− 2

arctan

√
3− 2x√

3
+ C =

1√
3
arctan

x√
3
+ C.

When y = 1,
√
2x√

x2+1
= 1, and hence x2 + 1 = 2x2, x2 = 1, giving x = 1.

When y →
√
2 = b, x → ∞.

Hence, ∫ √
2

1

dy

(3− y2)
√
2− y2

=
1√
3

[
arctan

x√
3

]∞
1

=
1√
3

(π
2
− π

6

)
=

π

3
√
3
.

Consider letting x = 1
y in the integral, and we have dx = − 1

y2 dy = −x2 dy, and when y = 1, x = 1,

and when y =
√
2, x = 1√

2
. Hence,

∫ 1

1√
2

y dy

(3y2 − 1)
√
2y2 − 1

=

∫ 1

√
2

1
x · 1

−x2 dx(
3
x2 − 1

)√
2
x2 − 1

=

∫ √
2

1

dx

(3− x2)
√
2− x2

=
π

3
√
3
.

3. Consider the same substitution y = ax√
x2+p

. We still have

dy =
ap(√

x2 + p
)3 dx,

and hence ∫
dy

(3y2 − 1)
√
2y2 − 1

=

∫
ap(√

x2 + p
)3 · dx(

3 · a2x2

x2+p − 1
)√

2 · a2x2

x2+p − 1

=

∫
ap dx

(3a2x2 − (x2 + p))
√
2a2x2 − (x2 + p)

=

∫
ap dx

((3a2 − 1)x2 − p)
√
(2a2 − 1)x2 − p

.
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Consider letting a = 1√
2
and p = −1, and we have∫

dy

(3y2 − 1)
√

2y2 − 1

=

∫
−dx√

2
(
1
2x

2 + 1
)

=

∫
−
√
2 dx

x2 + 2

= −
√
2 · 1√

2
arctan

x√
2
+ C

= − arctan
x√
2
+ C.

When y = 1√
2
, we have 1√

2
· x√

x2−1
= 1√

2
, and x → ∞. When y = 1, we have 1√

2
· x√

x2−1
= 1, and

x =
√
2. Hence, ∫ 1

1√
2

dy

(3y2 − 1)
√
2y2 − 1

= −
[
arctan

x√
2

]√2

∞

=

[
arctan

x√
2

]∞
√
2

=
π

2
− π

4

=
π

4
.
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2019.3 Question 6

Notice that the original equation

zz∗ − az∗ − a∗z + aa∗ − r2 = 0

can be simplified to
(z − a)(z∗ − a∗) = r2,

and the left-hand side satisfies

(z − a)(z∗ − a∗) = (z − a)(z − a)∗ = |z − a|2,

which means the original equation is
|z − a|2 = r2,

and hence
|z − a| = r.

This is a circle centred at a with radius r.

1. Since ω = 1
z , we have z = 1

ω . Hence,

1

ω

1

ω∗ − a
1

ω∗ − 1

ω
a∗ + aa∗ = r2

1− ωa− ω∗a∗ + aa∗ωω∗ = r2ωω∗

(r2 − aa∗)ωω∗ + ωa+ ω∗a∗ = 1

ωω∗ +
a

r2 − aa∗
ω +

a∗

r2 − aa∗
ω∗ =

1

r2 − aa∗(
ω +

a∗

r2 − aa∗

)(
ω +

a∗

r2 − aa∗

)∗

=
1

r2 − aa∗
+

aa∗
(r2 − aa∗)

2∣∣∣∣ω − a∗

aa∗ − r2

∣∣∣∣2 =
r2

(r2 − aa∗)
2∣∣∣∣ω − a∗

aa∗ − r2

∣∣∣∣ = r

|r2 − aa∗|
,

so ω is on a circle C ′ with centre a∗

aa∗−r2 and radius r
|r2−aa∗| .

If C and C ′ are the same circle, we have

a =
a∗

aa∗ − r2
, r =

r

|r2 − aa∗|
.

The second equation gives
∣∣r2 − aa∗

∣∣ = 1, which means r2 − aa∗ = ±1.

r2 − aa∗ = ±1

r2 − |a|2 = ±1(
|a|2 − r2

)2
= 1,

as desired.

When r2 − aa∗ = 1, a = −a∗, and hence a is pure imaginary. Since r2 = 1 + |a|2 in this case,
r > |a|, so the circle must contain the origin. The diagrams are as below, with the case Im(a) > 0
on the left, Im(a) = 0 in the middle, and Im(a) < 0 on the right:
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Re(z)

Im(z)

O

a
Re(z)

Im(z)

O a

Re(z)

Im(z)

O

a

When r2 − aa∗ = −1, a = a∗, and hence a is real. Since r2 = −1 + |a|2 in this case, r < |a|, so the
circle cannot contain the origin, and |a| > 1. The diagrams are as below, with the case Re(a) > 1
on the left, and Re(a) < −1 on the right:

Re(z)

Im(z)

O a
Re(z)

Im(z)

Oa

2. In the case where ω = 1
z∗ , we have z = 1

ω∗ , and hence similar to the previous one,

ωω∗ +
a

r2 − aa∗
ω∗ +

a∗

r2 − aa∗
ω =

1

r2 − aa∗(
ω +

a

r2 − aa∗

)(
ω +

a

r2 − aa∗

)∗

=
1

r2 − aa∗
+

aa∗
(r2 − aa∗)

2∣∣∣∣ω − a

aa∗ − r2

∣∣∣∣2 =
r2

(r2 − aa∗)
2∣∣∣∣ω − a

aa∗ − r2

∣∣∣∣ = r

|r2 − aa∗|
,

so ω is on a circle C ′ with centre a
aa∗−r2 and radius r

|r2−aa∗| .

If they are the same circle, we have

a =
a

aa∗ − r2
, r =

r

|r2 − aa∗|
.

We still have r2 − aa∗ = ±1.

When r2 − aa∗ = 1, we have a = −a, and a = 0.

When r2 − aa∗ = −1, we have a = a, and a can be any complex number satisfying |a| =
√
r2 + 1.

It is not the case that a is either real or pure imaginary.

Eason Shao Page 279 of 430



STEP Project Year 2019 Paper 3

2019.3 Question 7

1. When a = b,

y2(y2 − a2) = x2(x2 − a2)

x4 − y4 − a2x2 + a2y2 = 0

(x2 + y2 − a2)(x2 − y2) = 0

(x2 + y2 − a2)(x+ y)(x− y) = 0,

so the Devil’s Curve in this case consists of the line x + y = 0, the line x − y = 0, and the circle
x2 + y2 = a2.

The curve is shown as follows.

x

y

y = x

y = −x

x2 + y2 = a2

a−a

a

−a

2. When a = 2 and b =
√
5,

y2(y2 − 5) = x2(x2 − 4).

(a) Rearrangement gives us
(x2)2 − 4x2 − y2(y2 − 5) = 0,

and considering the discriminant, we have

(−4)2 + 4y2(y2 − 5) ≥ 0,

i.e. (
y2 − 1

) (
y2 − 4

)
≥ 0.

This gives y2 ≤ 1 or y2 ≥ 4, and in the case where y ≥ 0, this must give 0 ≤ y ≤ 1 or y ≥ 2,
as desired.

(b) When the curve is very close to the origin, we must have x4, y4 ≪ x2, y2, and hence 4x2 ≈ 5y2,
which means y ≈ 2√

5
x.

When the curve is very far from the origin, we must have x4, y4 ≫ x2, y2, and hence x4 ≈ y4,
which means y ≈ x.
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(c) Using implicit differentiation, we have

y2(y2 − 5) = x2(x2 − 4)

(4y3 − 10y)
dy

dx
= 4x3 − 8x

(2y2 − 5)y
dy

dx
= 2x(x2 − 2).

When dy
dx = 0, the tangent to the curve is parallel to the x-axis, and hence

2x(x2 − 2) = 0,

giving x = 0 or x =
√
2.

For x = 0, y2(y2 − 5) = 0, and therefore y = 0 or y =
√
5. The case where y = 0 does not

necessarily give that dy
dx = 0, but the case where y =

√
5 does.

For x =
√
2, y2(y2 − 5) = −4, y = 2 or y = 1. Both cases give dy

dx = 0.

So the tangent to the curve is parallel to the x-axis at points(
0,
√
5
)
,
(√

2, 1
)
,
(√

2, 2
)
.

We must have

(2y2 − 5)y = 2x(x2 − 2)
dx

dy
,

and when dx
dy = 0, the tangent to the curve is parallel to the y-axis.

This gives (2y2 − 5)y = 0, and hence y = 0 or y =
√

5
2 .

For y = 0, x = 0 or x = 2. The case x = 0 does not necessarily give dx
dy = 0, but the case

where x = 2 does.

For y =
√

5
2 , x

2(x2 − 4) = − 25
4 , and hence

4x4 − 16x2 + 25 = 4(x2 − 2)2 + 9 = 0,

which is not possible.

Hence, the tangent to the curve is parallel to the y-axis only at (2, 0).

Therefore, from the analysis in the previous parts, the curve looks as follows for x ≥ 0 and y ≥ 0:

x

y

O 2
√
2

1

2

√
5

y = x

y = 2√
5
x
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3. All x terms in the curve is in x2, so the graph is symmetric in the y-axis since x2 = (−x)2. Similarly,
the graph is symmetric in the x-axis as well. Hence, the complete graph looks as follows.

x

y

O 2
√
2−2 −

√
2

1

2

√
5

−1

−2

−
√
5

y = x

y = −x

y = 2√
5
x

y = − 2√
5
x
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2019.3 Question 8

1. W.L.O.G. let the origin be the centre of the rectangle ABCD (and let ABCD lie on the x-y
plane). We adjust the scale of the axis, and we let V (0, 0, 1) and A(−µ,−ν, 0), we have B(µ,−ν, 0),
C(µ, ν, 0) and D(−µ, ν, 0). Let µ, ν > 0.

Let M be the midpoint of AB and N be the midpoint of BC. We must have M(0,−ν, 0) and
N(µ, 0, 0).

The angle between the face AV B and the base ABCD must be the angle between
−−→
MO and

−−→
MV .

Hence,

cosα =

−−→
MO ·

−−→
MV∣∣∣−−→MO
∣∣∣∣∣∣−−→MV

∣∣∣ .
Note that

−−→
MO =

0
ν
0

 ,
−−→
MV = v −m =

0
ν
1

 ,

and hence

cosα =
ν2

ν ·
√
ν2 + 1

=
ν√

ν2 + 1
,

which gives
cos2 αν2 + cos2 α = ν2,

and hence
sin2 αν2 = cos2 α,

which gives
ν = cotα.

Similarly,
µ = cotβ.

A vector perpendicular to AV B can be

−→
V A×

−−→
V B =

−µ
−ν
−1

×

 µ
−ν
−1


=

∣∣∣∣∣∣
ı̂ ȷ̂ k̂

−µ −ν −1
µ −ν −1

∣∣∣∣∣∣
=

 0
−2µ
2µν


=

 0
−2 cotβ

2 cotα cotβ.


= −2 cotβ

sinα

 0
− sinα
cosα

 ,

and so  0
− sinα
cosα


is a unit vector perpendicular to AV B.
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Similarly,

−−→
V B ×

−−→
V C =

 µ
−ν
−1

×

 µ
ν
−1


=

∣∣∣∣∣∣
ı̂ ȷ̂ k̂
µ −ν −1
µ ν −1

∣∣∣∣∣∣
=

 2ν
0

2µν


=

 2 cotα
0

2 cotα cotβ


=

2 cotα

sinβ

sinβ
0

cosβ

 ,

and hence sinβ
0

cosβ


is a unit vector perpendicular to BV C.

The acute angle between AV B and BV C, θ, satisfies that

cos θ =

 0
− sinα
cosα

 ·

sinβ
0

cosβ

 = cosα cosβ,

as desired.

2. Notice that

cosφ =

−−→
BV ·

−−→
BO∣∣∣−−→BV

∣∣∣ · ∣∣∣−−→BO
∣∣∣

=

−µ
ν
1

 ·

−µ
ν
0


√
µ2 + ν2 + 1

√
µ2 + ν2

=

√
µ2 + ν2

µ2 + ν2 + 1
,

and hence

sinφ =
√
1− cos2 φ =

√
1

µ2 + ν2 + 1
,

which means
cotφ =

√
µ2 + ν2,

and hence
cot2 φ = µ2 + ν2 = cot2 α+ cot2 β,

as desired.
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Notice that

cos2 φ =
µ2 + ν2

µ2 + ν2 + 1

=
cot2 α+ cot2 β

cot2 α+ cot2 β + 1

=
cos2 α sin2 β + cos2 β sin2 α

cos2 α sin2 β + cos2 β sin2 α+ sin2 β sin2 α

=
cos2 α(1− cos2 β) + cos2 β(1− cos2 α)

(cos2 α+ sin2 α)(cos2 β + sin2 β)− cos2 α cos2 β

=
cos2 α+ cos2 β − 2 cos2 α cos2 β

1− cos2 α cos2 β

=
cos2 α+ cos2 β − 2 cos2 θ

1− cos2 θ
.

Since (cosα− cosβ)2 = cos2 α+ cos2 β − 2 cos θ ≥ 0, we have cos2 α+ cos2 β ≥ 2 cos θ, and hence

cos2 φ =
cos2 α+ cos2 β − 2 cos2 θ

1− cos2 θ
≥ 2 cos θ − 2 cos2 θ

1− cos2 θ
.

Notice that

cos2 φ ≥ 2 cos θ − 2 cos2 θ

1− cos2 θ

=
2 cos θ(1− cos θ)

(1− cos θ)(1 + cos θ)

=
2 cos θ

1 + cos θ

=
2

1 + cos θ
cos θ

>
2

1 + 1
cos θ

= cos θ

> cos2 θ,

since θ is acute, 0 < cos θ < 1.

This means cos2 φ > cos2 θ, and since θ, φ are acute, this must mean that φ < θ, since cosφ, cos θ
are both positive, and cosφ > cos θ.
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2019.3 Question 11

1. LetX be the number of customers arriving at builders’ merchants on a day, and we haveX ∼ Po(λ).
This means

P(X = x) =
λx

eλx!

for x = 0, 1, . . ..

Let Y be the number of customers taking the sand on a day. Then we have (Y | X = x) ∼ B(x, p),
and hence

P(Y = y | X = x) =

(
x

y

)
py(1− p)x−y.

Hence, we have

P(Y = y) =

∞∑
x=0

P(Y = y,X = x)

=

∞∑
x=0

P(Y = y | X = x) P(X = x)

=

∞∑
x=y

P(Y = y | X = x) P(X = x)

=

∞∑
x=y

(
x

y

)
py(1− p)x−y · λx

eλx!

=

∞∑
x=y

x!py(1− p)xλx

y!(x− y)!(1− p)yeλx!

=
py

y!(1− p)yeλ

∞∑
x=y

(1− p)xλx

(x− y)!

=
py

y!(1− p)yeλ

∞∑
x=0

[λ(1− p)]
x+y

x!

=
pyλy

y!eλ

∞∑
x=0

[λ(1− p)]
x

x!

=
(pλ)y

y!eλ
eλ(1−p)

=
(pλ)y

y!epλ
,

which is precisely the probability mass function of Po(pλ), as desired.

2. Let Z be the amount of sand remaining at the end of a day, and hence

Z = S(1− k)Y .

Hence, the expectation of Z is given by

E(Z) = S E
[
(1− k)Y

]
= S

∞∑
y=0

(1− k)y P(Y = y)

=
S

epλ

∞∑
y=0

(pλ(1− k))y

y!

=
S

epλ
epλ(1−k)

=
S

epkλ
.
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Let Z ′ be the amount of sand taken, and hence

Z ′ = S − Z,

which means
E(Z ′) = S − E(Z) = S

(
1− e−pkλ

)
,

precisely as desired.

3. Given that Z = z, the assistant will take kz of the remaining sand, and the probability of the
assistant taking the golden grain event (denoted as G) is

P(G | Z = z) =
kz

S
.

Using Z = S(1− k)Y , we have
P(G | Y = y) = k(1− k)y

P(G) =

∞∑
y=0

P(G, Y = y)

=

∞∑
y=0

P(G | Y = y) P(Y = y)

=

∞∑
y=0

k(1− k)y · (pλ)
y

y!epλ

=
k

epλ

∞∑
y=0

(pλ(1− k))y

y!

=
k

epλ
epλ(1−k)

=
k

epkλ
.

In the case where k = 0, no sand is taken, and hence the probability is 0.

In the case where k → 1, P(G) = e−pλ, which is the probability that Y = 0. This is precisely when
no customer takes any sand (since if any took the sand they must have taken the gold grain), and
as k → 1 the merchants’ assistant is guaranteed to take the gold provided it is still existent in the
final pile.

In the case where pλ > 1, we differentiate the probability with respect to k, which gives

dke−pkλ

dk
= (1− pkλ)e−pkλ.

e−pkλ is always positive. In the case where k < 1
pλ , 1 − pkλ > 0, and when k > 1

pλ , 1 − pkλ < 0.

Hence, precisely when k = 1
pλ , we will have P(G) taking a maximum, and since pλ > 1, this k will

satisfy 0 < k < 1 which is within the range.

Hence, the value of k that maximises P(G) is

k =
1

pλ
.
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2019.3 Question 12

For each integer between 1 to n inclusive, they are either in a subset of S, an element of T , or not. For
each integer there are 2 choices, and there are n integers, this means that

|T | = 2n,

as desired.

1. Since there is an equal number of sets B ∈ T for 1 ∈ B and 1 /∈ B, this means

P(1 ∈ A1) =
1

2
.

2. For each of the integer 1 ≤ t ≤ n, t /∈ A1 ∩A2 if and only if they cannot be in both of A1 and A2,
and hence

P(t /∈ A1 ∩A2) = 1−
(
1

2

)2

=
3

4
,

and A1∩A2 = ∅ if and only if for all 1 ≤ t ≤ n, that t /∈ A1∩A2. All these events are independent,
and hence

P(A1 ∩A2 = ∅) =

(
3

4

)n

.

By similar reasoning,

P(A1 ∩A2 ∩A3 = ∅) =

(
7

8

)n

,

and

P(A1 ∩A2 ∩ · · · ∩Am = ∅) =

[
1−

(
1

2

)m]n
=

(
1− 1

2m

)n

.

3. A1 ⊆ A2 if and only if for any 1 ≤ t ≤ n, we have t ∈ A1 =⇒ t ∈ A2. For this to happen, either
t /∈ A1 (in which case we do not worry about whether t is in A2 or not), or t ∈ A1 and t ∈ A2.
This means

P(t ∈ A1 =⇒ t ∈ A2) =
3

4
,

and hence

P(A1 ⊆ A2) =

(
3

4

)n

.

For any 1 ≤ t ≤ n, A1 ⊆ A2 ⊆ · · · ⊆ Am means we have t ∈ A1 =⇒ t ∈ A2 =⇒ · · · =⇒ t ∈ Am.
This happens if and only if t ∈ Ai gives t ∈ Aj for all j ≥ i, and this is true if and only if there
exists some 0 ≤ k ≤ m, such that for 1 ≤ i ≤ k, t /∈ Ak, and for k < j ≤ m, t ∈ Ak.

There are precisely m+ 1 choices for such k, and this means

P(t ∈ A1 =⇒ t ∈ A2 =⇒ · · · =⇒ t ∈ Am) =
m+ 1

2m
,

and hence

P(A1 ⊆ A2 ⊆ · · · ⊆ Am) =

(
m+ 1

2m

)n

,

which gives

P(A1 ⊆ A2 ⊆ A3) =

(
1

2

)n

.
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